scispace - formally typeset
Search or ask a question
Author

Bo Jing

Bio: Bo Jing is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Quantum entanglement & Quantum network. The author has an hindex of 7, co-authored 8 publications receiving 300 citations.

Papers
More filters
Journal ArticleDOI
12 Feb 2020-Nature
TL;DR: The entanglement of two atomic-ensemble quantum memories via optical fibres, enabled by the use of cavity enhancement and quantum frequency conversion, is demonstrated over dozens of kilometres.
Abstract: A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.

191 citations

Journal ArticleDOI
TL;DR: In this article, the authors used cavity enhancement to create bright atom-photon entanglement, and harness quantum frequency conversion to shift the atomic wavelength to telecom for long-distance communication.
Abstract: Quantum internet will enable a number of revolutionary applications. It relies on entanglement of remote quantum memories over long distances. Despite enormous progresses so far, the maximal physical separation achieved between two nodes is 1.3 km, and challenges for long distance remain. Here we make a significant step forward by entangling two atomic ensembles in one lab via photon transmission through metropolitan-scale fibers. We use cavity enhancement to create bright atom-photon entanglement, and harness quantum frequency conversion to shift the atomic wavelength to telecom. We realize entanglement over 22 km field-deployed fibers via two-photon interference, and entanglement over 50 km coiled fibers via single-photon interference. Our experiment can be extended to physically separated nodes with similar distance as a functional segment for atomic quantum networks, thus paving the way towards establishing atomic entanglement over many nodes and over much longer distance.

166 citations

Journal ArticleDOI
TL;DR: In this article, the entanglement of three remote quantum memories via three-photon interference was achieved by employing laser-cooled atomic ensembles and making use of a ring cavity to enhance the overall efficiency of the memory.
Abstract: Quantum memory networks as an intermediate stage in the development of a quantum internet1 will enable a number of significant applications2-5. To connect and entangle remote quantum memories, it is best to use photons. In previous experiments6-13, entanglement of two memory nodes has been achieved via photon interference. Going beyond the state of the art by entangling many quantum nodes at a distance is highly sought after. Here, we report the entanglement of three remote quantum memories via three-photon interference. We employ laser-cooled atomic ensembles and make use of a ring cavity to enhance the overall efficiency of our memory–photon entanglement. By interfering three single photons from three separate set-ups, we create entanglement of three memories and three photons. Then, by measuring the photons and applying feed-forward, we achieve heralded entanglement between the three memories. Our experiment may be employed as a building block to construct larger and complex quantum networks14,15. The entanglement of three remote quantum memories based on 87Rb atoms is created via three-photon interference by enhancing the memory–photon entanglement in ring cavities, demonstrating a genuine quantum network involving more than two quantum nodes.

54 citations

Journal ArticleDOI
TL;DR: The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and it is demonstrated its two times enhanced sensitivity to a magnetic field compared with a single excitation.
Abstract: We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

47 citations

Journal ArticleDOI
TL;DR: In this paper , the authors reviewed the current state of the art for generating entanglement of quantum nodes based on various physical systems such as single atoms, cold atomic ensembles, trapped ions, diamonds with nitrogen-vacancy centers, and solid-state host doped with rare-earth ions.
Abstract: Quantum networks play an extremely important role in quantum information science, with application to quantum communication, computation, metrology, and fundamental tests. One of the key challenges for implementing a quantum network is to distribute entangled flying qubits to spatially separated nodes, at which quantum interfaces or transducers map the entanglement onto stationary qubits. The stationary qubits at the separated nodes constitute quantum memories realized in matter while the flying qubits constitute quantum channels realized in photons. Dedicated efforts around the world for more than 20 years have resulted in both major theoretical and experimental progress toward entangling quantum nodes and ultimately building a global quantum network. Here, the development of quantum networks and the experimental progress over the past two decades leading to the current state of the art for generating entanglement of quantum nodes based on various physical systems such as single atoms, cold atomic ensembles, trapped ions, diamonds with nitrogen‐vacancy centers, and solid‐state host doped with rare‐earth ions are reviewed. Along the way, the merits are discussed and the potential of each of these systems toward realizing a quantum network is compared.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review gives both sides of the story, with the current best theory of quantum security, and an extensive survey of what makes quantum cryptosystem safe in practice.
Abstract: Some years ago quantum hacking became popular: devices implementing the unbreakable quantum cryptography were shown to have imperfections which could be exploited by attackers. Security has been thoroughly enhanced, as a consequence of both theoretical and experimental advances. This review gives both sides of the story, with the current best theory of quantum security, and an extensive survey of what makes quantum cryptosystem safe in practice.

761 citations

Journal Article
TL;DR: In this paper, a network of atomic clocks using non-local entangled states is proposed to achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.
Abstract: A proposed network of atomic clocks—using non-local entangled states—could achieve unprecedented stability and accuracy in time-keeping, as well as being secure against internal or external attack.

247 citations

Journal ArticleDOI
16 Apr 2021-Science
TL;DR: In this article, a three-node entanglement-based quantum network is presented, which combines remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic.
Abstract: The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.

192 citations

Journal ArticleDOI
12 Feb 2020-Nature
TL;DR: The entanglement of two atomic-ensemble quantum memories via optical fibres, enabled by the use of cavity enhancement and quantum frequency conversion, is demonstrated over dozens of kilometres.
Abstract: A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.

191 citations

Journal ArticleDOI
21 Sep 2020
TL;DR: The main characteristics of neutral atom quantum processors from atoms / qubits to application interfaces are reviewed, and a classification of a wide variety of tasks that can already be addressed in a computationally efficient manner in the Noisy Intermediate Scale Quantum era is proposed.
Abstract: The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optical traps, while preserving the fundamental properties of quantum matter (coherence, entanglement, superposition), makes these technologies prime candidates to implement disruptive computation paradigms. In this paper, we review the main characteristics of these devices from atoms / qubits to application interfaces, and propose a classification of a wide variety of tasks that can already be addressed in a computationally efficient manner in the Noisy Intermediate Scale Quantum era we are in. We illustrate how applications ranging from optimization challenges to simulation of quantum systems can be explored either at the digital level (programming gate-based circuits) or at the analog level (programming Hamiltonian sequences). We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range and introduce prospects for universal fault tolerant quantum computing and applications beyond quantum computing.

128 citations