Author

# Bo Li

Other affiliations: Feng Chia University, Tongji University, University of California, Los Angeles ...read more

Bio: Bo Li is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Computer science & Throughput. The author has an hindex of 66, co-authored 709 publications receiving 19887 citations. Previous affiliations of Bo Li include Feng Chia University & Tongji University.

##### Papers published on a yearly basis

##### Papers

More filters

••

18 Jun 2018

TL;DR: The Siamese region proposal network (Siamese-RPN) is proposed which is end-to-end trained off-line with large-scale image pairs for visual object tracking and consists of SiAMESe subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch.

Abstract: Visual object tracking has been a fundamental topic in recent years and many deep learning based trackers have achieved state-of-the-art performance on multiple benchmarks. However, most of these trackers can hardly get top performance with real-time speed. In this paper, we propose the Siamese region proposal network (Siamese-RPN) which is end-to-end trained off-line with large-scale image pairs. Specifically, it consists of Siamese subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch. In the inference phase, the proposed framework is formulated as a local one-shot detection task. We can pre-compute the template branch of the Siamese subnetwork and formulate the correlation layers as trivial convolution layers to perform online tracking. Benefit from the proposal refinement, traditional multi-scale test and online fine-tuning can be discarded. The Siamese-RPN runs at 160 FPS while achieving leading performance in VOT2015, VOT2016 and VOT2017 real-time challenges.

2,016 citations

••

18 Jun 2018

TL;DR: This work proposes a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions and shows that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints.

Abstract: Recent studies show that the state-of-the-art deep neural networks (DNNs) are vulnerable to adversarial examples, resulting from small-magnitude perturbations added to the input. Given that that emerging physical systems are using DNNs in safety-critical situations, adversarial examples could mislead these systems and cause dangerous situations. Therefore, understanding adversarial examples in the physical world is an important step towards developing resilient learning algorithms. We propose a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions. Using the real-world case of road sign classification, we show that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints. Due to the current lack of a standardized testing method, we propose a two-stage evaluation methodology for robust physical adversarial examples consisting of lab and field tests. Using this methodology, we evaluate the efficacy of physical adversarial manipulations on real objects. With a perturbation in the form of only black and white stickers, we attack a real stop sign, causing targeted misclassification in 100% of the images obtained in lab settings, and in 84.8% of the captured video frames obtained on a moving vehicle (field test) for the target classifier.

1,617 citations

•

TL;DR: This work considers a new type of attacks, called backdoor attacks, where the attacker's goal is to create a backdoor into a learning-based authentication system, so that he can easily circumvent the system by leveraging the backdoor.

Abstract: Deep learning models have achieved high performance on many tasks, and thus have been applied to many security-critical scenarios. For example, deep learning-based face recognition systems have been used to authenticate users to access many security-sensitive applications like payment apps. Such usages of deep learning systems provide the adversaries with sufficient incentives to perform attacks against these systems for their adversarial purposes. In this work, we consider a new type of attacks, called backdoor attacks, where the attacker's goal is to create a backdoor into a learning-based authentication system, so that he can easily circumvent the system by leveraging the backdoor. Specifically, the adversary aims at creating backdoor instances, so that the victim learning system will be misled to classify the backdoor instances as a target label specified by the adversary. In particular, we study backdoor poisoning attacks, which achieve backdoor attacks using poisoning strategies. Different from all existing work, our studied poisoning strategies can apply under a very weak threat model: (1) the adversary has no knowledge of the model and the training set used by the victim system; (2) the attacker is allowed to inject only a small amount of poisoning samples; (3) the backdoor key is hard to notice even by human beings to achieve stealthiness. We conduct evaluation to demonstrate that a backdoor adversary can inject only around 50 poisoning samples, while achieving an attack success rate of above 90%. We are also the first work to show that a data poisoning attack can create physically implementable backdoors without touching the training process. Our work demonstrates that backdoor poisoning attacks pose real threats to a learning system, and thus highlights the importance of further investigation and proposing defense strategies against them.

1,021 citations

••

TL;DR: Experimental results demonstrate that the proposed enhancement algorithm can not only enhance the details but also preserve the naturalness for non-uniform illumination images.

Abstract: Image enhancement plays an important role in image processing and analysis. Among various enhancement algorithms, Retinex-based algorithms can efficiently enhance details and have been widely adopted. Since Retinex-based algorithms regard illumination removal as a default preference and fail to limit the range of reflectance, the naturalness of non-uniform illumination images cannot be effectively preserved. However, naturalness is essential for image enhancement to achieve pleasing perceptual quality. In order to preserve naturalness while enhancing details, we propose an enhancement algorithm for non-uniform illumination images. In general, this paper makes the following three major contributions. First, a lightness-order-error measure is proposed to access naturalness preservation objectively. Second, a bright-pass filter is proposed to decompose an image into reflectance and illumination, which, respectively, determine the details and the naturalness of the image. Third, we propose a bi-log transformation, which is utilized to map the illumination to make a balance between details and naturalness. Experimental results demonstrate that the proposed algorithm can not only enhance the details but also preserve the naturalness for non-uniform illumination images.

918 citations

••

07 Jun 2015

TL;DR: This paper tackles this challenging and essentially underdetermined problem by regression on deep convolutional neural network (DCNN) features, combined with a post-processing refining step using conditional random fields (CRF).

Abstract: Predicting the depth (or surface normal) of a scene from single monocular color images is a challenging task. This paper tackles this challenging and essentially underdetermined problem by regression on deep convolutional neural network (DCNN) features, combined with a post-processing refining step using conditional random fields (CRF). Our framework works at two levels, super-pixel level and pixel level. First, we design a DCNN model to learn the mapping from multi-scale image patches to depth or surface normal values at the super-pixel level. Second, the estimated super-pixel depth or surface normal is refined to the pixel level by exploiting various potentials on the depth or surface normal map, which includes a data term, a smoothness term among super-pixels and an auto-regression term characterizing the local structure of the estimation map. The inference problem can be efficiently solved because it admits a closed-form solution. Experiments on the Make3D and NYU Depth V2 datasets show competitive results compared with recent state-of-the-art methods.

580 citations

##### Cited by

More filters

••

[...]

TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.

Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

•

9,185 citations

•

3,940 citations

••

01 Jan 2011

TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.

Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations