scispace - formally typeset
Search or ask a question
Author

Bo Monemar

Bio: Bo Monemar is an academic researcher from Linköping University. The author has contributed to research in topics: Photoluminescence & Exciton. The author has an hindex of 52, co-authored 793 publications receiving 13632 citations. Previous affiliations of Bo Monemar include University of Ulm & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of PLE measurements are combined with data on reflection and luminescence in the intrinsic region to determine the positions of $A, $B, and $C$-exciton ground-state transition energies and the lowest band gap.
Abstract: In the absence of samples suitable for transmission measurements, photoluminescence excitation spectra (PLE) have been found useful in the evaluation of detailed information about the lowest direct-absorption edge of GaN. In this work the results of PLE measurements are combined with data on reflection and luminescence in the intrinsic region to determine the positions of $A\ensuremath{-}$, $B\ensuremath{-}$, and $C$-exciton ground-state transition energies and the lowest band gap. Neglecting polariton effects, the value of the $A$-exciton ground-state transition energy is determined as being ${E}_{A}^{x}=3.4751\ifmmode\pm\else\textpm\fi{}0.0005$ eV at 1.6 K from combined PLE and emission spectra. The corresponding values for $B$ and $C$ exciton transitions are found to be ${E}_{B}^{x}=3.4815\ifmmode\pm\else\textpm\fi{}0.001$ eV and ${E}_{C}^{x}=3.493\ifmmode\pm\else\textpm\fi{}0.005$ eV from PLE spectra. The lowest band gap is determined to be ${E}_{g}^{A}={3.503}_{\ensuremath{-}0.002}^{+0.005}$ eV at 1.6 K, which fixes the ground-state $A$-exciton binding energy as ${E}_{B}(A)={28}_{\ensuremath{-}3}^{+6}$ meV, in good agreement with the effective-mass value. The temperature dependence of the band gap could also be accurately measured in PLE spectra and can be described by an expression ${E}_{g}^{A}=[3.503+\frac{(5.08\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}{T}^{2})}{(T\ensuremath{-}996)}]$ eV for $Tl295$ K, with an estimated relative uncertainty of \ifmmode\pm\else\textpm\fi{} 0.002 eV.

696 citations

Journal ArticleDOI
TL;DR: In this paper, a single crystalline and highly resistive wurtzite ZnO films were obtained from infrared (300-1200 cm−1) spectroscopic ellipsometry and Raman scattering studies.
Abstract: Infrared dielectric function spectra and phonon modes of high-quality, single crystalline, and highly resistive wurtzite ZnO films were obtained from infrared (300–1200 cm−1) spectroscopic ellipsometry and Raman scattering studies. The ZnO films were deposited by pulsed-laser deposition on c-plane sapphire substrates and investigated by high-resolution x-ray diffraction, high-resolution transmission electron microscopy, and Rutherford backscattering experiments. The crystal structure, phonon modes, and dielectric functions are compared to those obtained from a single-crystal ZnO bulk sample. The film ZnO phonon mode frequencies are highly consistent with those of the bulk material. A small redshift of the longitudinal optical phonon mode frequencies of the ZnO films with respect to the bulk material is observed. This is tentatively assigned to the existence of vacancy point defects within the films. Accurate long-wavelength dielectric constant limits of ZnO are obtained from the infrared ellipsometry anal...

580 citations

Journal ArticleDOI
TL;DR: In this article, defect related contributions to the reduction of the internal quantum efficiency of InGaN-based multiple quantum well light emitting diodes under high forward bias conditions are discussed.
Abstract: Defect related contributions to the reduction of the internal quantum efficiency of InGaN-based multiple quantum well light emitting diodes under high forward bias conditions are discussed. Screening of localization potentials for electrons is an important process to reduce the localization at high injection. The possible role of threading dislocations in inducing a parasitic tunneling current in the device is discussed. Phonon-assisted transport of holes via tunneling at defect sites along dislocations is suggested to be involved, leading to a nonradiative parasitic process enhanced by a local temperature rise at high injection.

280 citations

Journal ArticleDOI
TL;DR: In this article, high-purity β-Ga2O3 layers of high crystalline quality were grown homoepitaxially by halide vapor phase epitaxy (HVPE) using gaseous GaCl and O2 on (001) and (002) substrates prepared by edge defined film-fed growth.
Abstract: Thick high-purity β-Ga2O3 layers of high crystalline quality were grown homoepitaxially by halide vapor phase epitaxy (HVPE) using gaseous GaCl and O2 on (001) β-Ga2O3 substrates prepared by edge-defined film-fed growth. The surface morphology and structural quality of the grown layer improved with increasing growth temperature. X-ray diffraction ω-rocking curves for the (002) and (400) reflections for the layer grown at 1000 °C had small full widths at half maximum. Secondary ion mass spectrometry and electrical characteristics revealed that the growth of high-purity β-Ga2O3 layers with low effective donor concentration (Nd − Na < 1013 cm−3) is possible by HVPE.

277 citations

Journal ArticleDOI
TL;DR: In this paper, the temperature-dependent electrical properties of Pt/Ga2O3 Schottky barrier diodes (SBDs) fabricated on n−-Ga 2O3 drift layers grown on single-crystal n+-G 2O 3 (001) substrates by halide vapor phase epitaxy were investigated.
Abstract: We investigated the temperature-dependent electrical properties of Pt/Ga2O3 Schottky barrier diodes (SBDs) fabricated on n–-Ga2O3 drift layers grown on single-crystal n+-Ga2O3 (001) substrates by halide vapor phase epitaxy. In an operating temperature range from 21 °C to 200 °C, the Pt/Ga2O3 (001) Schottky contact exhibited a zero-bias barrier height of 1.09–1.15 eV with a constant near-unity ideality factor. The current–voltage characteristics of the SBDs were well-modeled by thermionic emission in the forward regime and thermionic field emission in the reverse regime over the entire temperature range.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
11 Feb 2000-Science
TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Abstract: Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.

7,062 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
Abstract: Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure (DH) blue‐light‐emitting diodes(LEDs) with the luminous intensity over 1 cd were fabricated As an active layer, a Zn‐doped InGaN layer was used for the DH LEDs The typical output power was 1500 μW and the external quantum efficiency was as high as 27% at a forward current of 20 mA at room temperature The peak wavelength and the full width at half‐maximum of the electroluminescence were 450 and 70 nm, respectively This value of luminous intensity was the highest ever reported for blue LEDs

3,497 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations