scispace - formally typeset
Search or ask a question
Author

Bo Segerman

Bio: Bo Segerman is an academic researcher from Umeå University. The author has contributed to research in topics: Stathmin & Microtubule. The author has an hindex of 12, co-authored 15 publications receiving 5076 citations.

Papers
More filters
Journal ArticleDOI
Gerald A. Tuskan1, Gerald A. Tuskan2, Stephen P. DiFazio3, Stephen P. DiFazio1, Stefan Jansson4, Joerg Bohlmann5, Igor V. Grigoriev6, Uffe Hellsten6, Nicholas H. Putnam6, Steven G. Ralph5, Stephane Rombauts7, Asaf Salamov6, Jacquie Schein, Lieven Sterck7, Andrea Aerts6, Rishikeshi Bhalerao4, Rishikesh P. Bhalerao8, Damien Blaudez9, Wout Boerjan7, Annick Brun9, Amy M. Brunner10, Victor Busov11, Malcolm M. Campbell12, John E. Carlson13, Michel Chalot9, Jarrod Chapman6, G.-L. Chen1, Dawn Cooper5, Pedro M. Coutinho14, Jérémy Couturier9, Sarah F. Covert15, Quentin C. B. Cronk5, R. Cunningham1, John M. Davis16, Sven Degroeve7, Annabelle Déjardin9, Claude W. dePamphilis13, John C. Detter6, Bill Dirks17, Inna Dubchak18, Inna Dubchak6, Sébastien Duplessis9, Jürgen Ehlting5, Brian E. Ellis5, Karla C Gendler19, David Goodstein6, Michael Gribskov20, Jane Grimwood21, Andrew Groover22, Lee E. Gunter1, Björn Hamberger5, Berthold Heinze, Yrjö Helariutta23, Yrjö Helariutta24, Yrjö Helariutta8, Bernard Henrissat14, D. Holligan15, Robert A. Holt, Wenyu Huang6, N. Islam-Faridi22, Steven J.M. Jones, M. Jones-Rhoades25, Richard A. Jorgensen19, Chandrashekhar P. Joshi11, Jaakko Kangasjärvi23, Jan Karlsson4, Colin T. Kelleher5, Robert Kirkpatrick, Matias Kirst16, Annegret Kohler9, Udaya C. Kalluri1, Frank W. Larimer1, Jim Leebens-Mack15, Jean-Charles Leplé9, Philip F. LoCascio1, Y. Lou6, Susan Lucas6, Francis Martin9, Barbara Montanini9, Carolyn A. Napoli19, David R. Nelson26, C D Nelson22, Kaisa Nieminen23, Ove Nilsson8, V. Pereda9, Gary F. Peter16, Ryan N. Philippe5, Gilles Pilate9, Alexander Poliakov18, J. Razumovskaya1, Paul G. Richardson6, Cécile Rinaldi9, Kermit Ritland5, Pierre Rouzé7, D. Ryaboy18, Jeremy Schmutz21, J. Schrader27, Bo Segerman4, H. Shin, Asim Siddiqui, Fredrik Sterky, Astrid Terry6, Chung-Jui Tsai11, Edward C. Uberbacher1, Per Unneberg, Jorma Vahala23, Kerr Wall13, Susan R. Wessler15, Guojun Yang15, T. Yin1, Carl J. Douglas5, Marco A. Marra, Göran Sandberg8, Y. Van de Peer7, Daniel S. Rokhsar17, Daniel S. Rokhsar6 
15 Sep 2006-Science
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Abstract: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

4,025 citations

Journal ArticleDOI
TL;DR: Major pathways for which the transcriptome and metabolome analysis suggested decreased activity were the pathway for C flux through guanosine 5'-diphosphate (GDP) sugars to mannans, the pentose phosphate pathway, lignin biosynthesis, and biosynthesis of cell wall matrix carbohydrates.
Abstract: Stems and branches of angiosperm trees form tension wood (TW) when exposed to a gravitational stimulus. One of the main characteristics of TW, which distinguishes it from normal wood, is the formation of fibers with a thick inner gelatinous cell wall layer mainly composed of crystalline cellulose. Hence TW is enriched in cellulose, and deficient in lignin and hemicelluloses. An expressed sequence tag library made from TW-forming tissues in Populus tremula (L.) x tremuloides (Michx.) and data from transcript profiling using microarray and metabolite analysis were obtained during TW formation in Populus tremula (L.) in two growing seasons. The data were examined with the aim of identifying the genes responsible for the change in carbon (C) flow into various cell wall components, and the mechanisms important for the formation of the gelatinous cell wall layer (G-layer). A specific effort was made to identify carbohydrate-active enzymes with a putative function in cell wall biosynthesis. An increased C flux to cellulose was suggested by a higher abundance of sucrose synthase transcripts. However, genes related to the cellulose biosynthetic machinery were not generally affected, although the expression of secondary wall-specific CesA genes was modified in both directions. Other pathways for which the data suggested increased activity included lipid and glucosamine biosynthesis and the pectin degradation machinery. In addition, transcripts encoding fasciclin-like arabinogalactan proteins were particularly increased and found to lack true Arabidopsis orthologs. Major pathways for which the transcriptome and metabolome analysis suggested decreased activity were the pathway for C flux through guanosine 5'-diphosphate (GDP) sugars to mannans, the pentose phosphate pathway, lignin biosynthesis, and biosynthesis of cell wall matrix carbohydrates. Several differentially expressed auxin- and ethylene-related genes and transcription factors were also identified.

389 citations

Journal ArticleDOI
TL;DR: The coding content of Populus and Arabidopsis genomes shows very high similarity, indicating that differences between these annual and perennial angiosperm life forms result primarily from differences in gene regulation.
Abstract: Trees present a life form of paramount importance for terrestrial ecosystems and human societies because of their ecological structure and physiological function and provision of energy and industrial materials. The genus Populus is the internationally accepted model for molecular tree biology. We have analyzed 102,019 Populus ESTs that clustered into 11,885 clusters and 12,759 singletons. We also provide >4,000 assembled full clone sequences to serve as a basis for the upcoming annotation of the Populus genome sequence. A public web-based EST database (populusdb) provides digital expression profiles for 18 tissues that comprise the majority of differentiated organs. The coding content of Populus and Arabidopsis genomes shows very high similarity, indicating that differences between these annual and perennial angiosperm life forms result primarily from differences in gene regulation. The high similarity between Populus and Arabidopsis will allow studies of Populus to directly benefit from the detailed functional genomic information generated for Arabidopsis, enabling detailed insights into tree development and adaptation. These data will also valuable for functional genomic efforts in Arabidopsis.

340 citations

Journal ArticleDOI
TL;DR: Wood tissues were the richest source of various other CAZyme transcripts, demonstrating the importance of this group of enzymes for xylogenesis, and seasonally dormant meristems of poplar showed a high prevalence of transcripts related to starch metabolism and surprisingly retained transcripts of some cell wall synthesis enzymes.
Abstract: Over 1,600 genes encoding carbohydrate-active enzymes (CAZymes) in the Populus trichocarpa (Torr. & Gray) genome were identified based on sequence homology, annotated, and grouped into families of glycosyltransferases, glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, and expansins. Poplar (Populus spp.) had approximately 1.6 times more CAZyme genes than Arabidopsis (Arabidopsis thaliana). Whereas most families were proportionally increased, xylan and pectin-related families were underrepresented and the GT1 family of secondary metabolite-glycosylating enzymes was overrepresented in poplar. CAZyme gene expression in poplar was analyzed using a collection of 100,000 expressed sequence tags from 17 different tissues and compared to microarray data for poplar and Arabidopsis. Expression of genes involved in pectin and hemicellulose metabolism was detected in all tissues, indicating a constant maintenance of transcripts encoding enzymes remodeling the cell wall matrix. The most abundant transcripts encoded sucrose synthases that were specifically expressed in wood-forming tissues along with cellulose synthase and homologs of KORRIGAN and ELP1. Woody tissues were the richest source of various other CAZyme transcripts, demonstrating the importance of this group of enzymes for xylogenesis. In contrast, there was little expression of genes related to starch metabolism during wood formation, consistent with the preferential flux of carbon to cell wall biosynthesis. Seasonally dormant meristems of poplar showed a high prevalence of transcripts related to starch metabolism and surprisingly retained transcripts of some cell wall synthesis enzymes. The data showed profound changes in CAZyme transcriptomes in different poplar tissues and pointed to some key differences in CAZyme genes and their regulation between herbaceous and woody plants.

280 citations

Journal ArticleDOI
TL;DR: In silico analysis, combined with the microarray analysis, revealed the usefulness of non-normalized EST libraries in elucidating transcriptional regulation of previously uncharacterized physiological processes.
Abstract: Background Poplar (Populus sp.) has emerged as the main model system for molecular and genetic studies of forest trees. A Populus expressed sequence tag (EST) database (POPULUSDB) was previously created from 19 cDNA libraries each originating from different Populus tree tissues, and opened to the public in September 2004. We used this dataset for in silico transcript profiling of a particular process in the woody tissues of the Populus stem: the programmed death of xylem fibers.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates and has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation.
Abstract: The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL: http://www.cazy.org/.

6,028 citations

Journal ArticleDOI
Gerald A. Tuskan1, Gerald A. Tuskan2, Stephen P. DiFazio1, Stephen P. DiFazio3, Stefan Jansson4, Joerg Bohlmann5, Igor V. Grigoriev6, Uffe Hellsten6, Nicholas H. Putnam6, Steven G. Ralph5, Stephane Rombauts7, Asaf Salamov6, Jacquie Schein, Lieven Sterck7, Andrea Aerts6, Rishikeshi Bhalerao4, Rishikesh P. Bhalerao8, Damien Blaudez9, Wout Boerjan7, Annick Brun9, Amy M. Brunner10, Victor Busov11, Malcolm M. Campbell12, John E. Carlson13, Michel Chalot9, Jarrod Chapman6, G.-L. Chen1, Dawn Cooper5, Pedro M. Coutinho14, Jérémy Couturier9, Sarah F. Covert15, Quentin C. B. Cronk5, R. Cunningham1, John M. Davis16, Sven Degroeve7, Annabelle Déjardin9, Claude W. dePamphilis13, John C. Detter6, Bill Dirks17, Inna Dubchak18, Inna Dubchak6, Sébastien Duplessis9, Jürgen Ehlting5, Brian E. Ellis5, Karla C Gendler19, David Goodstein6, Michael Gribskov20, Jane Grimwood21, Andrew Groover22, Lee E. Gunter1, Björn Hamberger5, Berthold Heinze, Yrjö Helariutta8, Yrjö Helariutta23, Yrjö Helariutta24, Bernard Henrissat14, D. Holligan15, Robert A. Holt, Wenyu Huang6, N. Islam-Faridi22, Steven J.M. Jones, M. Jones-Rhoades25, Richard A. Jorgensen19, Chandrashekhar P. Joshi11, Jaakko Kangasjärvi23, Jan Karlsson4, Colin T. Kelleher5, Robert Kirkpatrick, Matias Kirst16, Annegret Kohler9, Udaya C. Kalluri1, Frank W. Larimer1, Jim Leebens-Mack15, Jean-Charles Leplé9, Philip F. LoCascio1, Y. Lou6, Susan Lucas6, Francis Martin9, Barbara Montanini9, Carolyn A. Napoli19, David R. Nelson26, C D Nelson22, Kaisa Nieminen23, Ove Nilsson8, V. Pereda9, Gary F. Peter16, Ryan N. Philippe5, Gilles Pilate9, Alexander Poliakov18, J. Razumovskaya1, Paul G. Richardson6, Cécile Rinaldi9, Kermit Ritland5, Pierre Rouzé7, D. Ryaboy18, Jeremy Schmutz21, J. Schrader27, Bo Segerman4, H. Shin, Asim Siddiqui, Fredrik Sterky, Astrid Terry6, Chung-Jui Tsai11, Edward C. Uberbacher1, Per Unneberg, Jorma Vahala23, Kerr Wall13, Susan R. Wessler15, Guojun Yang15, T. Yin1, Carl J. Douglas5, Marco A. Marra, Göran Sandberg8, Y. Van de Peer7, Daniel S. Rokhsar6, Daniel S. Rokhsar17 
15 Sep 2006-Science
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Abstract: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

4,025 citations

Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
Abstract: Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

3,743 citations

Journal ArticleDOI
TL;DR: Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number of complete plant genomes.
Abstract: The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number (currently 25) of complete plant genomes, including all the land plants and selected algae sequenced at the Joint Genome Institute, as well as selected species sequenced elsewhere. Through a comprehensive plant genome database and web portal, these data and analyses are available to the broader plant science research community, providing powerful comparative genomics tools that help to link model systems with other plants of economic and ecological importance.

3,728 citations

Journal ArticleDOI
26 Aug 2007-Nature
TL;DR: A high-quality draft of the genome sequence of grapevine is obtained from a highly homozygous genotype, revealing the contribution of three ancestral genomes to the grapevine haploid content and explaining the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
Abstract: The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.

3,311 citations