scispace - formally typeset
Search or ask a question
Author

Bobby G. Sumpter

Bio: Bobby G. Sumpter is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Graphene & Polymer. The author has an hindex of 60, co-authored 619 publications receiving 23583 citations. Previous affiliations of Bobby G. Sumpter include University of Florida & Cornell University.


Papers
More filters
Journal ArticleDOI
24 Nov 2015-ACS Nano
TL;DR: Insight is provided into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies.
Abstract: The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a field: two-dimensional (2D) materials In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement Here, we review significant recent advances and important new developments in 2D materials “beyond graphene” We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (ie, silicene, phosphorene, etc) and transition metal carbide- and carbon nitride-based MXenes We then discuss the doping and functionalization of 2

2,036 citations

Journal ArticleDOI
TL;DR: An "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide to provide a prototype for a broad range of thin-film based energy storage devices.
Abstract: With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an “in-plane” fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1−2 graphene layers, to reach specific capacities up to 80 μFcm−2, while much higher (394 μFcm−2) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad ran...

1,149 citations

Journal ArticleDOI
27 Mar 2009-Science
TL;DR: This work has demonstrated an efficient edge-reconstruction process, at the atomic scale, for graphitic nanoribbons by Joule heating, which involves point defect annealing and edge reconstruction.
Abstract: Graphene nanoribbons can exhibit either quasi-metallic or semiconducting behavior, depending on the atomic structure of their edges. Thus, it is important to control the morphology and crystallinity of these edges for practical purposes. We demonstrated an efficient edge-reconstruction process, at the atomic scale, for graphitic nanoribbons by Joule heating. During Joule heating and electron beam irradiation, carbon atoms are vaporized, and subsequently sharp edges and step-edge arrays are stabilized, mostly with either zigzag- or armchair-edge configurations. Model calculations show that the dominant annealing mechanisms involve point defect annealing and edge reconstruction.

626 citations

Journal ArticleDOI
TL;DR: It is concluded that distinct, often contrasting, groups of these elicit the best performance within the accessible double-ζ or robust triple-η basis set regimes and among hydrogen-bonded or dispersion-dominated complexes.
Abstract: A systematic study of techniques for treating noncovalent interactions within the computationally efficient density functional theory (DFT) framework is presented through comparison to benchmark-quality evaluations of binding strength compiled for molecular complexes of diverse size and nature. In particular, the efficacy of functionals deliberately crafted to encompass long-range forces, a posteriori DFT+dispersion corrections (DFT-D2 and DFT-D3), and exchange-hole dipole moment (XDM) theory is assessed against a large collection (469 energy points) of reference interaction energies at the CCSD(T) level of theory extrapolated to the estimated complete basis set limit. The established S22 [revised in J. Chem. Phys. 132, 144104 (2010)] and JSCH test sets of minimum-energy structures, as well as collections of dispersion-bound (NBC10) and hydrogen-bonded (HBC6) dissociation curves and a pairwise decomposition of a protein–ligand reaction site (HSG), comprise the chemical systems for this work. From evaluati...

614 citations

Journal ArticleDOI
TL;DR: This work proposes a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of anElectric double-cylinder capacitor for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinders capacitor (EWCC) for micropores (< 2 nm port size).
Abstract: The unprecedented anomalous increase in capacitance of nanoporous carbon supercapacitors at pore sizes smaller than 1 nm [Science 2006, 313, 1760.] challenges the long-held presumption that pores smaller than the size of solvated electrolyte ions do not contribute to energy storage. We propose a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of an electric double-cylinder capacitor (EDCC) for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinder capacitor (EWCC) for micropores (< 2 nm pore size). Our analysis of the available experimental data in the micropore regime is confirmed by 1st principles density functional theory calculations and reveals significant curvature effects for carbon capacitance. The EDCC (and/or EWCC) model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size. The new model not only explains the experimental data, but also offers a practical direction for the optimization of the properties of carbon supercapacitors through experiments.

554 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations