scispace - formally typeset
Search or ask a question
Author

Bodo W. Reinisch

Bio: Bodo W. Reinisch is an academic researcher from University of Massachusetts Lowell. The author has contributed to research in topics: Ionosphere & Plasmasphere. The author has an hindex of 56, co-authored 345 publications receiving 12329 citations. Previous affiliations of Bodo W. Reinisch include Goddard Space Flight Center & University of Massachusetts Amherst.


Papers
More filters
Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is the de facto international standard for the climatological specification of ionospheric parameters and as such it is currently undergoing registration as Technical Specification (TS) of the International Standardization Organization (ISO) as discussed by the authors.
Abstract: The International Reference Ionosphere (IRI), a joint project of URSI and COSPAR, is the de facto international standard for the climatological specification of ionospheric parameters and as such it is currently undergoing registration as Technical Specification (TS) of the International Standardization Organization (ISO). IRI by charter and design is an empirical model based on a wide range of ground and space data. It describes monthly averages of ionospheric densities and temperatures in the altitude range 50–1500 km in the non-auroral ionosphere. Since its inception in 1969 the IRI model has been steadily improved with newer data and with better mathematical descriptions of global and temporal variation patterns. A large number of independent studies have validated the IRI model in comparisons with direct and indirect ionospheric measurements not used in the model development. A comparison with IRI is often one of the first science tasks by an ionospheric satellite or rocket team. This paper describes the latest version of the IRI model, IRI-2007, explaining the most important changes that are being introduced with this version. These include: (1) two new options for the topside electron density, (2) a new model for the topside ion composition, (3) the first-time inclusion of a model for the spread F occurrence probability, (4) a NeuralNet model for auroral E-region electron densities, (5) a model for the plasmaspheric electron temperature, and (6) the latest International Geomagnetic Reference Field (IGRF) model for the computation of magnetic coordinates including their changes due to the secular variation of the magnetic field.

1,029 citations

Journal ArticleDOI
TL;DR: The International Reference Ionosphere model (IRI-2016) as mentioned in this paper is the latest version of the IRI model and includes two new model options for the F2 peak height hmF2 and a better representation of topside ion densities at very low and high solar activities.
Abstract: The paper presents the latest version of the International Reference Ionosphere model (IRI-2016) describing the most important changes and improvements that were included with this version and discussing their impact on the IRI predictions of ionospheric parameters. IRI-2016 includes two new model options for the F2 peak height hmF2 and a better representation of topside ion densities at very low and high solar activities. In addition, a number of smaller changes were made concerning the use of solar indices and the speedup of the computer program. We also review the latest developments toward a Real-Time IRI. The goal is to progress from predicting climatology to describing the real-time weather conditions in the ionosphere.

735 citations

Journal ArticleDOI
TL;DR: A brief history of the IRI project is given, the latest version of the model, IRI-2012, is described and efforts to develop a real-time IRI model are discussed.
Abstract: The International Reference Ionosphere (IRI) project was established jointly by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth’s ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.

572 citations

Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is a standard for the specification of plasma parameters in Earth's ionosphere as mentioned in this paper, which is used by the International Union of Radio Science (URSI).
Abstract: The international reference ionosphere (IRI) is the internationally recognized and recommended standard for the specification of plasma parameters in Earth’s ionosphere. It describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 to 1,500 km. A joint working group of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) is in charge of developing and improving the IRI model. As requested by COSPAR and URSI, IRI is an empirical model being based on most of the available and reliable data sources for the ionospheric plasma. The paper describes the latest version of the model and reviews efforts towards future improvements, including the development of new global models for the F2 peak density and height, and a new approach to describe the electron density in the topside and plasmasphere. Our emphasis will be on the electron density because it is the IRI parameter most relevant to geodetic techniques and studies. Annual IRI meetings are the main venue for the discussion of IRI activities, future improvements, and additions to the model. A new special IRI task force activity is focusing on the development of a real-time IRI (RT-IRI) by combining data assimilation techniques with the IRI model. A first RT-IRI task force meeting was held in 2009 in Colorado Springs. We will review the outcome of this meeting and the plans for the future. The IRI homepage is at http://www.IRI.gsfc.nasa.gov.

359 citations

Journal ArticleDOI
TL;DR: In this article, ground-based optical and digital ionosonde measurements were conducted at Thule, Greenland to measure ionospheric structure and dynamics in the nighttime polar cap F layer, which showed the existence of large-scale (800-1000 km) plasma patches drifting in the antisunward direction during a moderately disturbed (Kp greater than or equal to 4) period.
Abstract: Ground-based optical and digital ionosonde measurements were conducted at Thule, Greenland to measure ionospheric structure and dynamics in the nighttime polar cap F layer. These observations showed the existence of large-scale (800-1000 km) plasma patches drifting in the antisunward direction during a moderately disturbed (Kp greater than or equal to 4) period. Simultaneous Dynamics Explorer (DE-B) low-altitude plasma instrument (LAPI) measurements show that these patches with peak densities of about 10 to the 6th el per cu cm are not locally produced by structured particle precipitation. The LAPI measurements show a uniform precipitation of polar rain electrons over the polar cap. The combined measurements provide a comprehensive description of patch structure and dynamics. They are produced near or equatorward of the dayside auroral zone and convect across the polar cap in the antisunward direction. Gradients within the large scale, drifting patches are subject to structuring by convective instabilities. UHF scintillation and spaced receiver measurements are used to map the resulting irregularity distribution within the patches.

328 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is the international standard for the specification of ionospheric densities and temperatures as mentioned in this paper, which was developed and is being improved-updated by a joint working group of the International Union of Radio Science (URSI) and the Committee on Space Research (COSPAR).
Abstract: The International Reference Ionosphere (IRI) is the international standard for the specification of ionospheric densities and temperatures. It was developed and is being improved-updated by a joint working group of the International Union of Radio Science (URSI) and the Committee on Space Research (COSPAR). A new version of IRI is scheduled for release in the year 2000. This paper describes the most important changes compared to the current version of IRI: (1) an improved representation of the electron density in the region from the F peak down to the E peak including a better description of the F1 layer occurrence statistics and a more realistic description of the low-latitude bottomside thickness, (2) inclusion of a model for storm-time conditions, (3) inclusion of an ion drift model, (4) two new options for the electron density in the D region, and (5) an improved model for the topside electron temperatures. The outcome of the most recent IRI Workshops (Kuhlungsborn, 1997, and Nagoya, 1998) will be reviewed, and the status of several ongoing task force activities (e.g., efforts to improve the representation of electron and ion densities in the topside ionosphere and the inclusion of a plasmaspheric extension) will be discussed. A few typical IRI applications will be highlighted in section 6.

1,226 citations

Book
01 Jan 1960

1,106 citations

Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is the de facto international standard for the climatological specification of ionospheric parameters and as such it is currently undergoing registration as Technical Specification (TS) of the International Standardization Organization (ISO) as discussed by the authors.
Abstract: The International Reference Ionosphere (IRI), a joint project of URSI and COSPAR, is the de facto international standard for the climatological specification of ionospheric parameters and as such it is currently undergoing registration as Technical Specification (TS) of the International Standardization Organization (ISO). IRI by charter and design is an empirical model based on a wide range of ground and space data. It describes monthly averages of ionospheric densities and temperatures in the altitude range 50–1500 km in the non-auroral ionosphere. Since its inception in 1969 the IRI model has been steadily improved with newer data and with better mathematical descriptions of global and temporal variation patterns. A large number of independent studies have validated the IRI model in comparisons with direct and indirect ionospheric measurements not used in the model development. A comparison with IRI is often one of the first science tasks by an ionospheric satellite or rocket team. This paper describes the latest version of the IRI model, IRI-2007, explaining the most important changes that are being introduced with this version. These include: (1) two new options for the topside electron density, (2) a new model for the topside ion composition, (3) the first-time inclusion of a model for the spread F occurrence probability, (4) a NeuralNet model for auroral E-region electron densities, (5) a model for the plasmaspheric electron temperature, and (6) the latest International Geomagnetic Reference Field (IGRF) model for the computation of magnetic coordinates including their changes due to the secular variation of the magnetic field.

1,029 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the current understanding and recent advances in the study of ionospheric storms with emphasis on the F2-region, and proposed a global first principle physical model to simulate the storm response of the coupled neutral and ionized upper atmospheric constituents.
Abstract: In this paper, our current understanding and recent advances in the study of ionospheric storms is reviewed, with emphasis on the F2-region. Ionospheric storms represent an extreme form of space weather with important effects on ground- and space-based technological systems. These phenomena are driven by highly variable solar and magnetospheric energy inputs to the Earth's upper atmosphere, which continue to provide a major difficulty for attempts now being made to simulate the detailed storm response of the coupled neutral and ionized upper atmospheric constituents using increasingly sophisticated global first principle physical models. Several major programs for coordinated theoretical and experimental study of these storms are now underway. These are beginning to bear fruit in the form of improved physical understanding and prediction of ionospheric storm effects at high, middle, and low latitude.

828 citations