scispace - formally typeset
Search or ask a question
Author

Boi Hanh Huynh

Bio: Boi Hanh Huynh is an academic researcher from Emory University. The author has contributed to research in topics: Iron–sulfur cluster & Methane monooxygenase. The author has an hindex of 36, co-authored 63 publications receiving 4436 citations. Previous affiliations of Boi Hanh Huynh include Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Mechanistic studies of the soluble methane monooxygenase (sMMO) enzyme system from Methylococcus capsulatus (Bath) are described and structures for H{sub peroxo} and Q are proposed.
Abstract: We describe mechanistic studies of the soluble methane monooxygenase (sMMO) enzyme system from Methylococcus capsulatus (Bath). Interactions among the three sMMO components, the hydroxylase (H), reductase (R), and protein B (B), were investigated by monitoring conversion of nitrobenzene to nitrophenol under both single turnover and catalytic conditions. During catalytic turnover, hydroxylation occurs to afford 3-nitrophenol (43%) and 4-nitrophenol (57%), whereas hydroxylation takes place exclusively (> 95%) to give 4-nitrophenol under single turnover conditions in the absence of reductase. Protein B exerts a strong influence on single turnover reactions of nitrobenzene, with optimal rate constants and yields obtained by using 1.5-2 equiv of protein R per equivalent of hydroxylase. The temperature dependence of these kinetic values was determined. Changes in dioxygen concentration and pH, as well as exchange of solvent accessible protons with D{sub 2}O, did not significantly affect the rate constants for either of these processes, the implications of which for the kinetic mechanism are discussed. From the present and related evidence, structures for H{sub peroxo} and Q are proposed. 54 refs., 11 figs., 4 tabs.

242 citations

Journal ArticleDOI
TL;DR: It is demonstrated that chloroplast CGFS Grxs have the potential to function as scaffold proteins for the assembly of [2Fe–2S] clusters that can be transferred intact to physiologically relevant acceptor proteins.
Abstract: Glutaredoxins (Grxs) are small oxidoreductases that reduce disulphide bonds or protein-glutathione mixed disulphides. More than 30 distinct grx genes are expressed in higher plants, but little is currently known concerning their functional diversity. This study presents biochemical and spectroscopic evidence for incorporation of a [2Fe–2S] cluster in two heterologously expressed chloroplastic Grxs, GrxS14 and GrxS16, and in vitro cysteine desulphurase-mediated assembly of an identical [2Fe–2S] cluster in apo-GrxS14. These Grxs possess the same monothiol CGFS active site as yeast Grx5 and both were able to complement a yeast grx5 mutant defective in Fe–S cluster assembly. In vitro kinetic studies monitored by CD spectroscopy indicate that [2Fe–2S] clusters on GrxS14 are rapidly and quantitatively transferred to apo chloroplast ferredoxin. These data demonstrate that chloroplast CGFS Grxs have the potential to function as scaffold proteins for the assembly of [2Fe–2S] clusters that can be transferred intact to physiologically relevant acceptor proteins. Alternatively, they may function in the storage and/or delivery of preformed Fe–S clusters or in the regulation of the chloroplastic Fe–S cluster assembly machinery.

231 citations

Journal ArticleDOI
TL;DR: Ravi et al. as discussed by the authors showed that the R2 subunit of Escherichia coli ribonucleotide reductase (RNR) contains a stable tyrosyl radical (•Y122) diferric cluster cofactor.
Abstract: The R2 subunit of Escherichia coli ribonucleotide reductase (RNR) contains a stable tyrosyl radical (•Y122) diferric cluster cofactor. Earlier studies on the cofactor assembly reaction detected a paramagnetic intermediate, X, that was found to be kinetically competent to oxidize Y122. Studies using rapid freeze-quench (RFQ) Mossbauer and EPR spectroscopies led to the proposal that X is comprised of two high spin ferric ions and a S = 1/2 ligand radical, mutually spin coupled to give a S = 1/2 ground state (Ravi, N.; Bollinger, J. M., Jr.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J. J. Am. Chem. Soc. 1994, 116, 8007−8014). An extension of RFQ methodology to Q-band ENDOR spectroscopy using 57Fe has shown that one of the irons has a very nearly isotropic hyperfine tensor (A(FeA) = −[74.2(2), 72.2(2), 73.2(2)] MHz) as expected for FeIII, but that the other iron site displays considerable anisotropy (A(FeB) = +[27.5(2), 36.8(2), 36.8(2)] MHz), indicative of substantial FeIV character. Reanalysis of the Mossbaue...

224 citations

Journal ArticleDOI
TL;DR: Analytical, spectroscopic, and mutagenesis data indicate that the ability of the Fra2-Grx3/4 complex to assemble a [2Fe-2S] cluster may act as a signal to control the iron regulon in response to cellular iron status in yeast.
Abstract: The transcription of iron uptake and storage genes in Saccharomyces cerevisiae is primarily regulated by the transcription factor Aft1. Nucleocytoplasmic shuttling of Aft1 is dependent upon mitochondrial Fe-S cluster biosynthesis via a signaling pathway that includes the cytosolic monothiol glutaredoxins (Grx3 and Grx4) and the BolA homologue Fra2. However, the interactions between these proteins and the iron-dependent mechanism by which they control Aft1 localization are unclear. To reconstitute and characterize components of this signaling pathway in vitro, we have overexpressed yeast Fra2 and Grx3/4 in Escherichia coli. We have shown that coexpression of recombinant Fra2 with Grx3 or Grx4 allows purification of a stable [2Fe-2S]2+ cluster-containing Fra2-Grx3 or Fra2-Grx4 heterodimeric complex. Reconstitution of a [2Fe-2S] cluster on Grx3 or Grx4 without Fra2 produces a [2Fe-2S]-bridged homodimer. UV−visible absorption and CD, resonance Raman, EPR, ENDOR, Mossbauer, and EXAFS studies of [2Fe-2S] Grx3/4...

209 citations

Journal ArticleDOI
TL;DR: The heme domain (iNOS(heme) of inducible nitric oxide synthase (NOS) was expressed in Escherichia coli and purified to homogeneity and provided the first direct evidence for an NOS-bound H(3)B.
Abstract: The heme domain (iNOS(heme)) of inducible nitric oxide synthase (NOS) was expressed in Escherichia coli and purified to homogeneity. Rapid freeze-quench (RFQ) EPR was used to monitor the reaction of the reduced iNOS(heme) with oxygen in the presence and absence of substrate. In these reactions, heme oxidation occurs at a rate of approximately 15 s(-)(1) at 4 degrees C. A transient species with a g = 2.0 EPR signal is also observed under these conditions. The spectral properties of the g = 2.0 signal are those of an anisotropic organic radical with S = (1)/(2). Comparison of the EPR spectra obtained when iNOS(heme) is reconstituted with N5-(14)N- and (15)N-substituted tetrahydrobiopterin (H(4)B) shows a hyperfine interaction with the pterin N5 nitrogen and identifies the radical as the one-electron oxidized form (H(3)B.) of the bound H(4)B. Substitution of D(2)O for H(2)O reveals the presence of hyperfine-coupled exchangeable protons in the H(4)B radical. This radical forms at a rate of 15-20 s(-)(1), with a slower decay rate that varies (0.12-0.7 s(-)(1)) depending on the substrate. At 127 ms, H(3)B. accumulates to a maximum of 80% of the total iNOS(heme) concentration in the presence of arginine but only to approximately 2.8% in the presence of NHA. Double-mixing RFQ experiments, where NHA is added after the formation of H(3)B., show that NHA does not react rapidly with H(3)B. and suggest that NHA instead prevents the formation of the H(4)B radical. These data constitute the first direct evidence for an NOS-bound H(3)B. and are most consistent with a role for H(4)B in electron transfer in the NOS reaction.

204 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in the authors' understanding of this enzyme family.
Abstract: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.

3,418 citations

Journal ArticleDOI
TL;DR: Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers.
Abstract: Copper is an essential trace element in living systems, present in the parts per million concentration range. It is a key cofactor in a diverse array of biological oxidation-reduction reactions. These involve either outer-sphere electron transfer, as in the blue copper proteins and the Cu{sub A} site of cytochrome oxidase and nitrous oxide redutase, or inner-sphere electron transfer in the binding, activation, and reduction of dioxygen, superoxide, nitrite, and nitrous oxide. Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 (T1) or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers. 428 refs.

3,241 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the same alkylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II) σ-complexes.
Abstract: ion. The oxidative addition mechanism was originally proposed22i because of the lack of a strong rate dependence on polar factors and on the acidity of the medium. Later, however, the electrophilic substitution mechanism also was proposed. Recently, the oxidative addition mechanism was confirmed by investigations into the decomposition and protonolysis of alkylplatinum complexes, which are the reverse of alkane activation. There are two routes which operate in the decomposition of the dimethylplatinum(IV) complex Cs2Pt(CH3)2Cl4. The first route leads to chloride-induced reductive elimination and produces methyl chloride and methane. The second route leads to the formation of ethane. There is strong kinetic evidence that the ethane is produced by the decomposition of an ethylhydridoplatinum(IV) complex formed from the initial dimethylplatinum(IV) complex. In D2O-DCl, the ethane which is formed contains several D atoms and has practically the same multiple exchange parameter and distribution as does an ethane which has undergone platinum(II)-catalyzed H-D exchange with D2O. Moreover, ethyl chloride is formed competitively with H-D exchange in the presence of platinum(IV). From the principle of microscopic reversibility it follows that the same ethylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II). Important results were obtained by Labinger and Bercaw62c in the investigation of the protonolysis mechanism of several alkylplatinum(II) complexes at low temperatures. These reactions are important because they could model the microscopic reverse of C-H activation by platinum(II) complexes. Alkylhydridoplatinum(IV) complexes were observed as intermediates in certain cases, such as when the complex (tmeda)Pt(CH2Ph)Cl or (tmeda)PtMe2 (tmeda ) N,N,N′,N′-tetramethylenediamine) was treated with HCl in CD2Cl2 or CD3OD, respectively. In some cases H-D exchange took place between the methyl groups on platinum and the, CD3OD prior to methane loss. On the basis of the kinetic results, a common mechanism was proposed to operate in all the reactions: (1) protonation of Pt(II) to generate an alkylhydridoplatinum(IV) intermediate, (2) dissociation of solvent or chloride to generate a cationic, fivecoordinate platinum(IV) species, (3) reductive C-H bond formation, producing a platinum(II) alkane σ-complex, and (4) loss of the alkane either through an associative or dissociative substitution pathway. These results implicate the presence of both alkane σ-complexes and alkylhydridoplatinum(IV) complexes as intermediates in the Pt(II)-induced C-H activation reactions. Thus, the first step in the alkane activation reaction is formation of a σ-complex with the alkane, which then undergoes oxidative addition to produce an alkylhydrido complex. Reversible interconversion of these intermediates, together with reversible deprotonation of the alkylhydridoplatinum(IV) complexes, leads to multiple H-D exchange

2,505 citations

Journal ArticleDOI
TL;DR: The authors present here a classification and structure/function analysis of native metal sites based on these functions, and the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized.
Abstract: For present purposes, a protein-bound metal site consists of one or more metal ions and all protein side chain and exogenous bridging and terminal ligands that define the first coordination sphere of each metal ion. Such sites can be classified into five basic types with the indicated functions: (1) structural -- configuration (in part) of protein tertiary and/or quaternary structure; (2) storage -- uptake, binding, and release of metals in soluble form: (3) electron transfer -- uptake, release, and storage of electrons; (4) dioxygen binding -- metal-O{sub 2} coordination and decoordination; and (5) catalytic -- substrate binding, activation, and turnover. The authors present here a classification and structure/function analysis of native metal sites based on these functions, where 5 is an extensive class subdivided by the type of reaction catalyzed. Within this purview, coverage of the various site types is extensive, but not exhaustive. The purpose of this exposition is to present examples of all types of sites and to relate, insofar as is currently feasible, the structure and function of selected types. The authors largely confine their considerations to the sites themselves, with due recognition that these site features are coupled to protein structure at all levels. In themore » next section, the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized. Structure/function relationships are systematically explored and tabulations of structurally defined sites presented. Finally, future directions in bioinorganic research in the context of metal site chemistry are considered. 620 refs.« less

2,242 citations