scispace - formally typeset
Search or ask a question
Author

Boniface P. T. Fokwa

Bio: Boniface P. T. Fokwa is an academic researcher from University of California, Riverside. The author has contributed to research in topics: Boride & Crystal structure. The author has an hindex of 20, co-authored 163 publications receiving 1989 citations. Previous affiliations of Boniface P. T. Fokwa include Iowa State University & United States Department of Energy.


Papers
More filters
Journal ArticleDOI
TL;DR: Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy for the first time and show excellent activity in the same range as the recently reported α-MoB and β-Mo2 C phases, indicating a strong boron-dependency of these borides for the HER.
Abstract: Molybdenum-based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo2 B, α-MoB, β-MoB, and MoB2 by arc-melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy (XPS) for the first time; MoB2 and β-MoB show excellent activity in the same range as the recently reported α-MoB and β-Mo2 C phases, while the molybdenum richest phase Mo2 B show significantly lower HER activity, indicating a strong boron-dependency of these borides for the HER. In addition, MoB2 and β-MoB show long-term cycle stability in acidic solution.

250 citations

Journal ArticleDOI
TL;DR: In this article, the effect of spin-orbit torques (SOT) on the FGT/Pt interface was investigated in monolayer all-vdW nanodevices.
Abstract: Among van der Waals (vdW) layered ferromagnets, Fe3GeTe2 (FGT) is an excellent candidate material to form FGT/heavy metal heterostructures for studying the effect of spin-orbit torques (SOT). Its metallicity, strong perpendicular magnetic anisotropy built in the single atomic layers, relatively high Curie temperature (Tc ∼ 225 K), and electrostatic gate tunability offer a tantalizing possibility of achieving the ultimate high SOT limit in monolayer all-vdW nanodevices. In this study, we fabricate heterostructures of FGT/Pt with 5 nm of Pt sputtered onto the atomically flat surface of ∼15-23 nm exfoliated FGT flakes. The spin current generated in Pt exerts a damping-like SOT on FGT magnetization. At ∼2.5 × 1011 A/m2 current density, SOT causes the FGT magnetization to switch, which is detected by the anomalous Hall effect of FGT. To quantify the SOT effect, we measure the second harmonic Hall responses as the applied magnetic field rotates the FGT magnetization in the plane. Our analysis shows that the SOT efficiency is comparable with that of the best heterostructures containing three-dimensional (3D) ferromagnetic metals and much larger than that of heterostructures containing 3D ferrimagnetic insulators. Such large efficiency is attributed to the atomically flat FGT/Pt interface, which demonstrates the great potential of exploiting vdW heterostructures for highly efficient spintronic nanodevices.

149 citations

Journal ArticleDOI
TL;DR: The crystallographic study sheds light on the possible Al intercalation sites in the titanium sulfides, while the results from galvanostatic intermittent titration indicate that the low Al3+ diffusion coefficients in the sulfide crystal structures are the primary obstacle to facile Al interCalation-extraction.
Abstract: We report the electrochemical intercalation–extraction of aluminum (Al) in the layered TiS2 and spinel-based cubic Cu0.31Ti2S4 as the potential cathode materials for rechargeable Al-ion batteries. The electrochemical characterizations demonstrate the feasibility of reversible Al intercalation in both titanium sulfides with layered TiS2 showing better properties. The crystallographic study sheds light on the possible Al intercalation sites in the titanium sulfides, while the results from galvanostatic intermittent titration indicate that the low Al3+ diffusion coefficients in the sulfide crystal structures are the primary obstacle to facile Al intercalation–extraction.

119 citations

Journal ArticleDOI
TL;DR: The low-susceptibility data go back to strong antiferromagnetic spin-spin coupling, similar to the behavior of the electronically related oxides CoO and NiO.
Abstract: Synthesis, structure determination, and magnetic properties are reported for the metastable and crystal-chemically isotypic phases cobalt carbodiimide, CoNCN, and nickel carbodiimide, NiNCN, adopting the hexagonal system and space group P63/mmc (NiAs type) with interatomic distances of Co-N = 2.17 Angstrom and Ni-N = 2.12 Angstrom and an octahedral coordination of the transition-metal ions; the NCN(2-) units reveal the carbodiimide shape with two C=N double bonds. The low-susceptibility data go back to strong antiferromagnetic spin-spin coupling, similar to the behavior of the electronically related oxides CoO and NiO.

98 citations

Journal ArticleDOI
TL;DR: This new method takes advantage of the redox chemistry of Sn/SnCl2 , the volatility and recrystallization of SnCl2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies
Abstract: Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl2 , the volatility and recrystallization of SnCl2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo2 B, α-MoB, MoB2 , Mo2 B4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale.

93 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic‐Structure Reconstruction) enables chemical‐bonding analysis based on periodic plane‐wave density‐functional theory output and is applicable to a wide range of first‐principles simulations in solid‐state and materials chemistry.
Abstract: The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

1,531 citations

Journal ArticleDOI
TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.
Abstract: Hydrogen fuel is considered as the cleanest renewable resource and the primary alternative to fossil fuels for future energy supply. Sustainable hydrogen generation is the major prerequisite to realize future hydrogen economy. The electrocatalytic hydrogen evolution reaction (HER), as the vital step of water electrolysis to H2 production, has been the subject of extensive study over the past decades. In this comprehensive review, we first summarize the fundamentals of HER and review the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts. We systemically discuss the insights into the relationship among the catalytic activity, morphology, structure, composition, and synthetic method. Strategies for developing an effective catalyst, including increasing the intrinsic activity of active sites and/or increasing the number of active sites, are summarized and highlighted. Finally, the challenges, perspectives, and research directions of HER electrocatalysis are featured.

1,387 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations

Journal ArticleDOI
TL;DR: A novel computational technique is proposed by transferring the PW/PAW wavefunctions to a properly chosen local basis using analytically derived expressions that recovers the total and projected electronic DOS with a high degree of confidence, and yields a realistic chemical‐bonding picture in the framework of the projected COHP method.
Abstract: Quantum-chemical computations of solids benefit enormously from numerically efficient plane-wave (PW) basis sets, and together with the projector augmented-wave (PAW) method, the latter have risen to one of the predominant standards in computational solid-state sciences. Despite their advantages, plane waves lack local information, which makes the interpretation of local densities-of-states (DOS) difficult and precludes the direct use of atom-resolved chemical bonding indicators such as the crystal orbital overlap population (COOP) and the crystal orbital Hamilton population (COHP) techniques. Recently, a number of methods have been proposed to overcome this fundamental issue, built around the concept of basis-set projection onto a local auxiliary basis. In this work, we propose a novel computational technique toward this goal by transferring the PW/PAW wavefunctions to a properly chosen local basis using analytically derived expressions. In particular, we describe a general approach to project both PW and PAW eigenstates onto given custom orbitals, which we then exemplify at the hand of contracted multiple-ζ Slater-type orbitals. The validity of the method presented here is illustrated by applications to chemical textbook examples-diamond, gallium arsenide, the transition-metal titanium-as well as nanoscale allotropes of carbon: a nanotube and the C60 fullerene. Remarkably, the analytical approach not only recovers the total and projected electronic DOS with a high degree of confidence, but it also yields a realistic chemical-bonding picture in the framework of the projected COHP method.

1,103 citations