scispace - formally typeset
Search or ask a question
Author

Bor Luen Tang

Bio: Bor Luen Tang is an academic researcher from National University of Singapore. The author has contributed to research in topics: Rab & Golgi apparatus. The author has an hindex of 24, co-authored 82 publications receiving 1499 citations. Previous affiliations of Bor Luen Tang include Institute of Molecular and Cell Biology & University Health System.


Papers
More filters
Journal ArticleDOI
TL;DR: The prevailing data suggest that micro- and nanoplastic accumulation in mammalian and human tissues would likely have negative, yet unclear long-term consequences, and there is a need for cellular and systemic toxicity due to micro-and nanoplastics to be better illuminated, and the underlying mechanisms defined by further work.
Abstract: Fragmented or otherwise miniaturized plastic materials in the form of micro- or nanoplastics have been of nagging environmental concern. Perturbation of organismal physiology and behavior by micro- and nanoplastics have been widely documented for marine invertebrates. Some of these effects are also manifested by larger marine vertebrates such as fishes. More recently, possible effects of micro- and nanoplastics on mammalian gut microbiota as well as host cellular and metabolic toxicity have been reported in mouse models. Human exposure to micro- and nanoplastics occurs largely through ingestion, as these are found in food or derived from food packaging, but also in a less well-defined manner though inhalation. The pathophysiological consequences of acute and chronic micro- and nanoplastics exposure in the mammalian system, particularly humans, are yet unclear. In this review, we focus on the recent findings related to the potential toxicity and detrimental effects of micro- and nanoplastics as demonstrated in mouse models as well as human cell lines. The prevailing data suggest that micro- and nanoplastics accumulation in mammalian and human tissues would likely have negative, yet unclear long-term consequences. There is a need for cellular and systemic toxicity due to micro- and nanoplastics to be better illuminated, and the underlying mechanisms defined by further work.

375 citations

Journal ArticleDOI
TL;DR: Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases.
Abstract: Prolonged survival of a typical postmitotic neuron hinges on a balance between multiple processes, among these are a sustenance of ATP production and protection against reactive oxygen species. In neuropathological conditions, mitochondrial defects often lead to both a drop in ATP levels, as well as increase reactive oxygen species production from inefficient electron transport processes and NADPH-oxidases activities. The former often resulted in the phenomenon of compensatory aerobic glycolysis. The latter stretches the capacity of the cell's redox buffering capacity, and may lead to damages of key enzymes involved in energy metabolism. Several recent reports have indicated that enhancing glucose availability and uptake, as well as increasing glycolytic flux via pharmacological or genetic manipulation of glycolytic enzymes, could be protective in animal models of several major neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism. Here, I discuss these findings and the possible underlying mechanisms of how an increase in glucose uptake and glycolysis could be neuroprotective. Increased glycolytic production of ATP would help alleviate energy deficiency, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases. Furthermore, channeling of glucose into the Pentose Phosphate Pathway would increase the redox buffering capacity of the cell.

75 citations

Journal ArticleDOI
TL;DR: Changes in post-Golgi membrane trafficking in aging neurons that may influence APP processing is particularly relevant to late-onset, idiopathic AD.
Abstract: Aberrant and/or cumulative amyloid-beta (Abeta) production, resulting from proteolytic processing of the amyloid precursor protein (APP) by beta and gamma-secretases, have been postulated to be a main etiological basis of Alzheimer disease (AD). A number of proteins influence the subcellular trafficking itinerary of APP and the beta-site APP-cleaving enzyme (BACE1) between the cell surface, endosomes and the trans-Golgi network (TGN). Available evidence suggests that co-residence of APP and BACE1 in the endosomal compartments promotes amyloidogenesis. Retrograde transport of APP out of the endosome to the TGN reduces Abeta production, while APP routed to and kept at the cell surface enhances its non-amyloidogenic, alpha-secretase-mediated processing. Changes in post-Golgi membrane trafficking in aging neurons that may influence APP processing is particularly relevant to late-onset, idiopathic AD. Dystrophic axons are key features of AD pathology, and impaired axonal transport could play crucial roles in the pathogenesis of idiopathic AD. Recent evidence has also indicated that Abeta-induced synaptic defects and memory impairment could be explained by a loss of both AMPA and NMDA receptors through endocytosis. Detail understanding of factors that influence these neuronal trafficking processes will open up novel therapeutic avenues for preventing or delaying the onset of symptomatic AD.

75 citations

Journal ArticleDOI
TL;DR: The relative ease of leptin's accessibility to the brain by peripheral administration makes it a potential drug candidate in the development of therapeutics for brain injuries and neurodegeneration.

71 citations

Journal ArticleDOI
31 Dec 2015-Cells
TL;DR: What is currently known about the cellular physiology and pathophysiology of MIRO functions is discussed, including the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex.
Abstract: The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca2+-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions.

70 citations


Cited by
More filters
01 Mar 2017
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR-signaling network contributes to human disease is highlighted.
Abstract: The mechanistic target of rapamycin (mTOR) coordinates eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in regulating many fundamental cell processes, from protein synthesis to autophagy, and deregulated mTOR signaling is implicated in the progression of cancer and diabetes, as well as the aging process. Here, we review recent advances in our understanding of mTOR function, regulation, and importance in mammalian physiology. We also highlight how the mTOR signaling network contributes to human disease and discuss the current and future prospects for therapeutically targeting mTOR in the clinic.

2,014 citations

Journal ArticleDOI
TL;DR: The relationship between the control of membrane traffic and the maintenance of organelle structure has been investigated with the use of a remarkable drug, brefeldin A (BFA), and some speculative models concerning the mechanism and regulation ofmembrane traffic within the central vacuolar system are proposed.
Abstract: THE definition of cellular organelles has evolved over the last hundred years largely driven by morphologic observations, but more recently has been supplemented and complemented by functional and biochemical studies (Palade, 1975) . Thus, organelles are now identified both by their morphology and by the set ofcomponents that comprise them . Determining how organelle identity is established and maintained and how newly synthesized protein and membrane are sorted to different organelles are the central issues of organellogenesis . Essential to the many cellular functions that take place within the central vacuolar system (which consists ofthe ER, Golgi apparatus, secretory vesicles, endosomes, and lysosomes) is membrane traffic which mediates the exchange of components between different organelles . There are two critical characteristics of membrane traffic . First, only certain sets oforganelles exchange membrane and the patterns of this exchange define what are called membrane pathways . Second, multiple pathways intersect at specific points within the central vacuolar system . For specific components to "choose" the correct pathway at such points of crossing, mechanisms exist to impose choices on specific molecules . This process is called sorting . The characteristicsofeachorganelle within the central vacuolar system are likely to be intimately tied to the properties ofmembrane traffic . An imbalance in the magnitude ofmembrane input into and egress from an organelle would have profound effects on the size ofthat compartment . In addition, failures in sorting or aberrations in targeting pathways would be expected to profoundly affect the identity of individual organelles . Recently, the relationship between the control of membrane traffic and the maintenance of organelle structure has been investigated with the use ofa remarkable drug, brefeldin A (BFA).' In this review we will summarize recent findings with BFA and propose some speculative models concerning the mechanism and regulation ofmembrane traffic within the central vacuolar system .

1,832 citations

Journal ArticleDOI
TL;DR: The aims of the present article are to discuss the role of ligand modification in the discovery of clinically efficacious drugs and the role that ligands endowed with outstanding in vitro selectivity have in this area.
Abstract: Our understanding of the pathogenesis of diseases has advanced enormously in recent decades. As a consequence, drug discovery has gradually shifted from an entirely humanphenotype-based endeavor to today’s reductionist approach centered on single molecular targets. The focus has shifted from the early animal models to isolated proteins via cellular models. This change has led to a decrease in complexity but also to a decrease in relevance to the human condition. In this context, drug research has become (and still is) aimed mainly at the discovery of small molecules able to modulate the biological function of a single protein target thought to be fully responsible for a certain disease. Much effort has been devoted to achieving selectivity for that given target, and indeed, nowadays, many ligands endowed with outstanding in vitro selectivity are available. This one-molecule, one-target paradigm has led to the discovery of many successful drugs, and it will probably remain a milestone for years to come. However, it should be noted that a highly selective ligand for a given target does not always result in a clinically efficacious drug. This may be because (a) the ligand does not recognize the target in vivo, (b) the ligand does not reach the site of action, or (c) the interaction with the respective target does not have enough impact on the diseased system to restore it effectively. Reasons for the latter might lie in both the multifactorial nature of many diseases and the fact that cells can often find ways to compensate for a protein whose activity is affected by a drug, by taking advantage of the redundancy of the system, i.e., of the existence of parallel pathways. Medicinal chemists are often faced with these frustrating aspects of drug research. Drawbacks a and b can be addressed through the well-established rational ligand modification approaches. But issue c is more problematic and needs to be carefully discussed. This is one of the aims of the present article.

963 citations

Patent
18 Aug 2006
TL;DR: The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease.
Abstract: The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease.

900 citations

Journal ArticleDOI
TL;DR: The strongest direct evidence that chronic neuroinflammation may have a more important role to play in PD versus other neurodegenerative diseases is reviewed and genetic deficiency is not the only way to reduce protective factors in the brain which may function to keep microglial responses in check or regulate the sensitivity of DA neurons are proposed.

889 citations