scispace - formally typeset
Search or ask a question
Author

Bor Yann Liaw

Other affiliations: Max Planck Society, Electrochemical Society, Stanford University  ...read more
Bio: Bor Yann Liaw is an academic researcher from Idaho National Laboratory. The author has contributed to research in topics: Battery (electricity) & Lithium. The author has an hindex of 45, co-authored 147 publications receiving 9213 citations. Previous affiliations of Bor Yann Liaw include Max Planck Society & Electrochemical Society.


Papers
More filters
Journal ArticleDOI
TL;DR: Liu et al. as mentioned in this paper discuss crucial conditions needed to achieve a specific energy higher than 350 Wh kg−1, up to 500 Wh kg −1, for rechargeable Li metal batteries using high-nickel-content lithium nickel manganese cobalt oxides as cathode materials.
Abstract: State-of-the-art lithium (Li)-ion batteries are approaching their specific energy limits yet are challenged by the ever-increasing demand of today’s energy storage and power applications, especially for electric vehicles. Li metal is considered an ultimate anode material for future high-energy rechargeable batteries when combined with existing or emerging high-capacity cathode materials. However, much current research focuses on the battery materials level, and there have been very few accounts of cell design principles. Here we discuss crucial conditions needed to achieve a specific energy higher than 350 Wh kg−1, up to 500 Wh kg−1, for rechargeable Li metal batteries using high-nickel-content lithium nickel manganese cobalt oxides as cathode materials. We also provide an analysis of key factors such as cathode loading, electrolyte amount and Li foil thickness that impact the cell-level cycle life. Furthermore, we identify several important strategies to reduce electrolyte-Li reaction, protect Li surfaces and stabilize anode architectures for long-cycling high-specific-energy cells. Jun Liu and Battery500 Consortium colleagues contemplate the way forward towards high-energy and long-cycling practical batteries.

1,747 citations

Journal ArticleDOI
TL;DR: In this paper, major technical solutions include: (1) applying electrochemical models to predict the critical conditions for deposition initiation; (2) preventions by improved battery design and material modification; and (3) applying adequate charging protocols to inhibit lithium deposition.

727 citations

Journal ArticleDOI
TL;DR: In this paper, a mechanistic model that can enable battery diagnosis and prognosis is presented, which can simulate various "what-if" scenarios of battery degradation modes via a synthetic approach based on specific electrode behavior with proper adjustment of the loading ratio and the extent of degradation in and between the two electrodes.

580 citations

Journal ArticleDOI
TL;DR: In this article, the capacity fading of an 18650 LiFePO4-based lithium ion cell was studied using the dynamic stress test (DST) schedule in a cycle life evaluation.

503 citations

Journal ArticleDOI
TL;DR: Recent advances in biofuel cell technology have addressed deficiencies and include methods to increase lifetime and environmental stability, but remain limited by short lifetimes, low power densities and inefficient oxidation of fuels.

477 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
Languang Lu1, Xuebing Han1, Jianqiu Li1, Jianfeng Hua, Minggao Ouyang1 
TL;DR: In this article, a brief introduction to the composition of the battery management system (BMS) and its key issues such as battery cell voltage measurement, battery states estimation, battery uniformity and equalization, battery fault diagnosis and so on, is given.

3,650 citations

Journal ArticleDOI
TL;DR: In this article, the mechanisms of lithium-ion battery ageing are reviewed and evaluated, and the most promising candidate as the power source for (hybrid) electric vehicles and stationary energy storage.

3,115 citations