scispace - formally typeset
Search or ask a question
Author

Boris Hudec

Other affiliations: Slovak Academy of Sciences
Bio: Boris Hudec is an academic researcher from National Chiao Tung University. The author has contributed to research in topics: Atomic layer deposition & Electrode. The author has an hindex of 16, co-authored 45 publications receiving 1341 citations. Previous affiliations of Boris Hudec include Slovak Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a novel ‘Simultaneous Logic in-Memory’ (SLIM) methodology which is complementary to existing LIM approaches in literature and demonstrates novel SLIM bitcells comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors.
Abstract: von Neumann architecture based computers isolate computation and storage (i.e. data is shuttled between computation blocks (processor) and memory blocks). The to-and-fro movement of data leads to a fundamental limitation of modern computers, known as the Memory wall. Logic in-Memory (LIM)/In-Memory Computing (IMC) approaches aim to address this bottleneck by directly computing inside memory units thereby eliminating energy-intensive and time-consuming data movement. Several recent works in literature, propose realization of logic function(s) directly using arrays of emerging resistive memory devices (example- memristors, RRAM/ReRAM, PCM, CBRAM, OxRAM, STT-MRAM etc.), rather than using conventional transistors for computing. The logic/embedded-side of digital systems (like processors, micro-controllers) can greatly benefit from such LIM realizations. However, the pure storage-side of digital systems (example SSDs, enterprise storage etc.) will not benefit much from such LIM approaches as when memory arrays are used for logic they lose their core functionality of storage. Thus, there is the need for an approach complementary to existing LIM techniques, that's more beneficial for the storage-side of digital systems; one that gives compute capability to memory arrays not at the cost of their existing stored states. Fundamentally, this would require memory nanodevice arrays that are capable of storing and computing simultaneously. In this paper, we propose a novel 'Simultaneous Logic in-Memory' (SLIM) methodology which is complementary to existing LIM approaches in literature. Through extensive experiments we demonstrate novel SLIM bitcells (1T-1R/2T-1R) comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors. Proposed bitcells are capable of implementing both Memory and Logic operations simultaneously. Detailed programming scheme, array level implementation, and controller architecture are also proposed. Furthermore, to study the impact of proposed SLIM approach for real-world implementations, we performed analysis for two applications: (i) Sobel Edge Detection, and (ii) Binary Neural Network- Multi layer Perceptron (BNN-MLP). By performing all computations in SLIM bitcell array, huge Energy Delay Product (EDP) savings of ≈75× for 1T-1R (≈40× for 2T-1R) SLIM bitcell were observed for edge-detection application while EDP savings of ≈3.5× for 1T-1R (≈1.6× for 2T-1R) SLIM bitcell were observed for BNN-MLP application respectively, in comparison to conventional computing. EDP savings owing to reduction in data transfer between CPU ↔ memory is observed to be ≈780× (for both SLIM bitcells).

633 citations

Journal ArticleDOI
TL;DR: This manuscript describes the most recommendable methodologies for the fabrication, characterization, and simulation of RS devices, as well as the proper methods to display the data obtained.
Abstract: Resistive switching (RS) is an interesting property shown by some materials systems that, especially during the last decade, has gained a lot of interest for the fabrication of electronic devices, with electronic nonvolatile memories being those that have received the most attention. The presence and quality of the RS phenomenon in a materials system can be studied using different prototype cells, performing different experiments, displaying different figures of merit, and developing different computational analyses. Therefore, the real usefulness and impact of the findings presented in each study for the RS technology will be also different. This manuscript describes the most recommendable methodologies for the fabrication, characterization, and simulation of RS devices, as well as the proper methods to display the data obtained. The idea is to help the scientific community to evaluate the real usefulness and impact of an RS study for the development of RS technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

441 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a novel "simultaneous logic in-memory" (SLIM) methodology that allows to implement both memory and logic operations simultaneously on the same bitcell in a non-destructive manner without losing the previously stored Memory state.
Abstract: Von Neumann architecture based computers isolate/physically separate computation and storage units i.e. data is shuttled between computation unit (processor) and memory unit to realize logic/ arithmetic and storage functions. This to-and-fro movement of data leads to a fundamental limitation of modern computers, known as the memory wall. Logic in-Memory (LIM) approaches aim to address this bottleneck by computing inside the memory units and thereby eliminating the energy-intensive and time-consuming data movement. However, most LIM approaches reported in literature are not truly "simultaneous" as during LIM operation the bitcell can be used only as a Memory cell or only as a Logic cell. The bitcell is not capable of storing both the Memory/Logic outputs simultaneously. Here, we propose a novel 'Simultaneous Logic in-Memory' (SLIM) methodology that allows to implement both Memory and Logic operations simultaneously on the same bitcell in a non-destructive manner without losing the previously stored Memory state. Through extensive experiments we demonstrate the SLIM methodology using non-filamentary bilayer analog OxRAM devices with NMOS transistors (2T-1R bitcell). Detailed programming scheme, array level implementation and controller architecture are also proposed. Furthermore, to study the impact of introducing SLIM array in the memory hierarchy, a simple image processing application (edge detection) is also investigated. It has been estimated that by performing all computations inside the SLIM array, the total Energy Delay Product (EDP) reduces by ~ 40x in comparison to a modern-day computer. EDP saving owing to reduction in data transfer between CPU Memory is observed to be ~ 780x.

384 citations

Journal ArticleDOI
TL;DR: A two-layer perceptron network is successfully trained online and the classification accuracy of MNIST handwritten digit data set is improved by using 6-/8-b analog synapses, respectively, with extremely high asymmetric nonlinearity.
Abstract: Asymmetric nonlinear weight update is considered as one of the major obstacles for realizing hardware neural networks based on analog resistive synapses, because it significantly compromises the online training capability. This paper provides new solutions to this critical issue through co-optimization with the hardware-applicable deep-learning algorithms. New insights on engineering activation functions and a threshold weight update scheme effectively suppress the undesirable training noise induced by inaccurate weight update. We successfully trained a two-layer perceptron network online and improved the classification accuracy of MNIST handwritten digit data set to 87.8%/94.8% by using 6-/8-b analog synapses, respectively, with extremely high asymmetric nonlinearity.

81 citations

Journal ArticleDOI
TL;DR: In this article, the development of resistive switching (RS) device technology including the fundamental physics, material engineering, three-dimensional integration, and bottom-up fabrication is reviewed, and options for 3D memory array architectures are presented for the mass storage application.
Abstract: Emerging non-volatile memory technologies are promising due to their anticipated capacity benefits, non-volatility, and zero idle energy. One of the most promising candidates is resistive random access memory (RRAM) based on resistive switching (RS). This paper reviews the development of RS device technology including the fundamental physics, material engineering, three-dimension (3D) integration, and bottom-up fabrication. The device operation, physical mechanisms for resistive switching, reliability metrics, and memory cell selector candidates are summarized from the recent advancement in both industry and academia. Options for 3D memory array architectures are presented for the mass storage application. Finally, the potential application of bottom-up fabrication approaches for effective manufacturing is introduced.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper proposes a novel ‘Simultaneous Logic in-Memory’ (SLIM) methodology which is complementary to existing LIM approaches in literature and demonstrates novel SLIM bitcells comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors.
Abstract: von Neumann architecture based computers isolate computation and storage (i.e. data is shuttled between computation blocks (processor) and memory blocks). The to-and-fro movement of data leads to a fundamental limitation of modern computers, known as the Memory wall. Logic in-Memory (LIM)/In-Memory Computing (IMC) approaches aim to address this bottleneck by directly computing inside memory units thereby eliminating energy-intensive and time-consuming data movement. Several recent works in literature, propose realization of logic function(s) directly using arrays of emerging resistive memory devices (example- memristors, RRAM/ReRAM, PCM, CBRAM, OxRAM, STT-MRAM etc.), rather than using conventional transistors for computing. The logic/embedded-side of digital systems (like processors, micro-controllers) can greatly benefit from such LIM realizations. However, the pure storage-side of digital systems (example SSDs, enterprise storage etc.) will not benefit much from such LIM approaches as when memory arrays are used for logic they lose their core functionality of storage. Thus, there is the need for an approach complementary to existing LIM techniques, that's more beneficial for the storage-side of digital systems; one that gives compute capability to memory arrays not at the cost of their existing stored states. Fundamentally, this would require memory nanodevice arrays that are capable of storing and computing simultaneously. In this paper, we propose a novel 'Simultaneous Logic in-Memory' (SLIM) methodology which is complementary to existing LIM approaches in literature. Through extensive experiments we demonstrate novel SLIM bitcells (1T-1R/2T-1R) comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors. Proposed bitcells are capable of implementing both Memory and Logic operations simultaneously. Detailed programming scheme, array level implementation, and controller architecture are also proposed. Furthermore, to study the impact of proposed SLIM approach for real-world implementations, we performed analysis for two applications: (i) Sobel Edge Detection, and (ii) Binary Neural Network- Multi layer Perceptron (BNN-MLP). By performing all computations in SLIM bitcell array, huge Energy Delay Product (EDP) savings of ≈75× for 1T-1R (≈40× for 2T-1R) SLIM bitcell were observed for edge-detection application while EDP savings of ≈3.5× for 1T-1R (≈1.6× for 2T-1R) SLIM bitcell were observed for BNN-MLP application respectively, in comparison to conventional computing. EDP savings owing to reduction in data transfer between CPU ↔ memory is observed to be ≈780× (for both SLIM bitcells).

633 citations

Journal ArticleDOI
TL;DR: A simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes is reported.
Abstract: In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

460 citations

Journal ArticleDOI
TL;DR: This manuscript describes the most recommendable methodologies for the fabrication, characterization, and simulation of RS devices, as well as the proper methods to display the data obtained.
Abstract: Resistive switching (RS) is an interesting property shown by some materials systems that, especially during the last decade, has gained a lot of interest for the fabrication of electronic devices, with electronic nonvolatile memories being those that have received the most attention. The presence and quality of the RS phenomenon in a materials system can be studied using different prototype cells, performing different experiments, displaying different figures of merit, and developing different computational analyses. Therefore, the real usefulness and impact of the findings presented in each study for the RS technology will be also different. This manuscript describes the most recommendable methodologies for the fabrication, characterization, and simulation of RS devices, as well as the proper methods to display the data obtained. The idea is to help the scientific community to evaluate the real usefulness and impact of an RS study for the development of RS technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

441 citations

Journal ArticleDOI
01 Aug 2018
TL;DR: It is shown that multilayer hexagonal boron nitride (h-BN) can be used as a resistive switching medium to fabricate high-performance electronic synapses, enabling the emulation of a range of synaptic-like behaviour, including both short- and long-term plasticity.
Abstract: Neuromorphic computing systems, which use electronic synapses and neurons, could overcome the energy and throughput limitations of today’s computing architectures. However, electronic devices that can accurately emulate the short- and long-term plasticity learning rules of biological synapses remain limited. Here, we show that multilayer hexagonal boron nitride (h-BN) can be used as a resistive switching medium to fabricate high-performance electronic synapses. The devices can operate in a volatile or non-volatile regime, enabling the emulation of a range of synaptic-like behaviour, including both short- and long-term plasticity. The behaviour results from a resistive switching mechanism in the h-BN stack, based on the generation of boron vacancies that can be filled by metallic ions from the adjacent electrodes. The power consumption in standby and per transition can reach as low as 0.1 fW and 600 pW, respectively, and with switching times reaching less than 10 ns, demonstrating their potential for use in energy-efficient brain-like computing. Vertically structured electronic synapses, which exhibit both short- and long-term plasticity, can be created using layered two-dimensional hexagonal boron nitride.

420 citations

Journal ArticleDOI
TL;DR: The opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies, from the perspective of matrix and logic computing, are discussed.
Abstract: Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics.

402 citations