scispace - formally typeset
Search or ask a question
Author

Boris Meyler

Bio: Boris Meyler is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Dielectric & Non-volatile memory. The author has an hindex of 20, co-authored 66 publications receiving 1535 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a unified description of the gain mechanism in GaN Schottky detectors is presented, which is valid for all device structures under study, and represents a unified model for all devices under study.
Abstract: Schottky barrier GaN ultraviolet detectors, both in vertical and in lateral configuration, as well as in a metal–semiconductor–metal geometry were implemented. All devices exhibit a high gain at both reverse and forward bias. The photoresponse in the forward bias is in the positive current direction. We attribute the gain to trapping of minority carriers at the semiconductor–metal interface. The excellent agreement between the calculated responsivity and the experiment indicates that the model is valid for all device structures under study, and represents a unified description of gain mechanism in GaN Schottky detectors.

280 citations

Journal ArticleDOI
TL;DR: In this paper, the refractive index of hexagonal AlxGa1−xN at room temperature and its temperature dependence at elevated temperatures have been determined with high accuracy by spectroscopic ellipsometry.
Abstract: The refractive index of hexagonal AlxGa1−xN at room temperature and its temperature dependence at elevated temperatures have been determined with high accuracy by spectroscopic ellipsometry. Measurements have been conducted on samples with aluminum molar fractions ranging from 0% to 65% and at temperatures between 290 and 580 K. The refractive index in the transparent spectral region has been determined as a function of photon energy, using the Kramers–Kronig relations with suitable approximations, and applying a multilayer model. An analytical expression for the composition and temperature dependent refractive index in the transparent region, above room temperature, has been obtained. The refractive index has been found to increase with increasing temperature. The shift of the refractive index is strongest for GaN and decreases for AlGaN with increasing aluminum molar fraction. The impact on the properties of GaN based waveguides is illustrated by a slab waveguide calculation.

115 citations

Journal ArticleDOI
TL;DR: In this article, a simple procedure termed lateral confined epitaxy (LCE) was developed, which confines the growth of GaN to separate mesas of Si, which are defined on the Si substrate prior to the growth.
Abstract: GaN epitaxial layers grown uniformly on Si substrates suffer from randomly distributed thermal cracks. The growth on prepatterned Si substrates is demonstrated as an efficient way to control the geometrical distribution of the thermal cracks. In order to study this effect and to find the maximum crack-free lateral dimension of a GaN patterned unit on Si, a simple procedure termed lateral confined epitaxy (LCE) was developed. This procedure confines the growth of GaN to separate mesas of Si, which are defined on the Si substrate prior to the growth. The growth is performed by a single, continuous metalorganic chemical vapor deposition run. LCE enables the variation of mesa lateral size, while keeping the growth rate nearly unchanged. By performing a set of LCE growth runs of ∼0.7 μm GaN, on Si mesas of varying lateral dimensions, we specified the maximum crack-free range of GaN on Si as 14.0±0.3 μm, for that GaN thickness. A reduction of random crack density is observed with decreasing GaN pattern size and is explained in terms of shear-lag stress distribution.

101 citations

Journal ArticleDOI
TL;DR: In this article, the influence of the buffer layer growth temperature and growth duration on the morphology and preferred orientation of GaN films was studied, and a sharp transition in the growth mode occurred at 760°C.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in the realization of photonic crystals in diamond is summarized based on the creation of a free standing diamond membrane into which the desired nano-sized patterns are milled by the use of Focused-Ion-Beam (FIB).

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed.
Abstract: The electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed. Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

2,612 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: In this paper, a general review of the advances in widebandgap semiconductor photodetectors is presented, including SiC, diamond, III-nitrides and ZnS.
Abstract: Industries such as the automotive, aerospace or military, as well as environmental and biological research have promoted the development of ultraviolet (UV) photodetectors capable of operating at high temperatures and in hostile environments. UV-enhanced Si photodiodes are hence giving way to a new generation of UV detectors fabricated from wide-bandgap semiconductors, such as SiC, diamond, III-nitrides, ZnS, ZnO, or ZnSe. This paper provides a general review of latest progresses in wide-bandgap semiconductor photodetectors.

1,194 citations

Journal ArticleDOI
TL;DR: In this paper, the structural, mechanical, thermal, and chemical properties of substrates used for gallium nitride (GaN) epitaxy are compiled, and the properties of GaN films deposited on these substrates are reviewed.
Abstract: In this review, the structural, mechanical, thermal, and chemical properties of substrates used for gallium nitride (GaN) epitaxy are compiled, and the properties of GaN films deposited on these substrates are reviewed. Among semiconductors, GaN is unique; most of its applications uses thin GaN films deposited on foreign substrates (materials other than GaN); that is, heteroepitaxial thin films. As a consequence of heteroepitaxy, the quality of the GaN films is very dependent on the properties of the substrate—both the inherent properties such as lattice constants and thermal expansion coefficients, and process induced properties such as surface roughness, step height and terrace width, and wetting behavior. The consequences of heteroepitaxy are discussed, including the crystallographic orientation and polarity, surface morphology, and inherent and thermally induced stress in the GaN films. Defects such as threading dislocations, inversion domains, and the unintentional incorporation of impurities into the epitaxial GaN layer resulting from heteroepitaxy are presented along with their effect on device processing and performance. A summary of the structure and lattice constants for many semiconductors, metals, metal nitrides, and oxides used or considered for GaN epitaxy is presented. The properties, synthesis, advantages and disadvantages of the six most commonly employed substrates (sapphire, 6H-SiC, Si, GaAs, LiGaO 2 , and AlN) are presented. Useful substrate properties such as lattice constants, defect densities, elastic moduli, thermal expansion coefficients, thermal conductivities, etching characteristics, and reactivities under deposition conditions are presented. Efforts to reduce the defect densities and to optimize the electrical and optical properties of the GaN epitaxial film by substrate etching, nitridation, and slight misorientation from the (0 0 0 1) crystal plane are reviewed. The requirements, the obstacles, and the results to date to produce zincblende GaN on 3C-SiC/Si(0 0 1) and GaAs are discussed. Tables summarizing measures of the GaN quality such as XRD rocking curve FWHM, photoluminescence peak position and FWHM, and electron mobilities for GaN epitaxial layers produced by MOCVD, MBE, and HVPE for each substrate are given. The initial results using GaN substrates, prepared as bulk crystals and as free-standing epitaxial films, are reviewed. Finally, the promise and the directions of research on new potential substrates, such as compliant and porous substrates are described.

810 citations