scispace - formally typeset
Search or ask a question
Author

Borivoje Nikolic

Bio: Borivoje Nikolic is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: CMOS & Low-density parity-check code. The author has an hindex of 51, co-authored 272 publications receiving 11172 citations. Previous affiliations of Borivoje Nikolic include University of Illinois at Urbana–Champaign & University of California.


Papers
More filters
Book
29 Dec 1995
TL;DR: Digital Integrated Circuits as discussed by the authors is a practical book that bridges the gap between the circuit perspective and system perspective of digital integrated circuit design, including the impact of interconnect, design for low power, issues in timing and clocking, design methodologies and the tremendous effect of design automation on the digital design perspective.
Abstract: Progressive in content and form, this practical book successfully bridges the gap between the circuit perspective and system perspective of digital integrated circuit design. Digital Integrated Circuits maintains a consistent, logical flow of subject matter throughout. Addresses today's most significant and compelling industry topics, including: the impact of interconnect, design for low power, issues in timing and clocking, design methodologies, and the tremendous effect of design automation on the digital design perspective. For readers interested in digital circuit design.

1,348 citations

Journal ArticleDOI
TL;DR: The design and experimental evaluation of a new sense-amplifier-based flip-flop (SAFF) is presented and it is found that the main speed bottleneck of existing SAFF's is the cross-coupled set-reset (SR) latch in the output stage.
Abstract: Design and experimental evaluation of a new sense-amplifier-based flip-flop (SAFF) is presented. It was found that the main speed bottleneck of existing SAFF's is the cross-coupled set-reset (SR) latch in the output stage. The new flip-flop uses a new output stage latch topology that significantly reduces delay and improves driving capability. The performance of this flip-flop is verified by measurements on a test chip implemented in 0.18 /spl mu/m effective channel length CMOS. Demonstrated speed places it among the fastest flip-flops used in the state-of-the-art processors. Measurement techniques employed in this work as well as the measurement set-up are discussed in this paper.

436 citations

Journal ArticleDOI
01 Mar 2001
TL;DR: The requirements for computational hardware and memory are analyzed, and suggestions for reduced-complexity decoding and reduced control logic are provided.
Abstract: VLST implementation complexities of soft-input soft-output (SISO) decoders are discussed. These decoders are used in iterative algorithms based on Turbo codes or Low Density Parity Check (LDPC) codes, and promise significant bit error performance advantage over conventionally used partial-response maximum likelihood (PRML) systems, at the expense of increased complexity. This paper analyzes the requirements for computational hardware and memory, and provides suggestions for reduced-complexity decoding and reduced control logic. Serial concatenation of interleaved codes, using an outer block code with a partial response channel acting as an inner encoder, is of special interest for magnetic storage applications.

274 citations

Journal ArticleDOI
TL;DR: A 1.8-V 14-b 12-MS/s pseudo-differential pipeline analog-to-digital converter (ADC) using a passive capacitor error-averaging technique and a nested CMOS gain-boosting technique is described.
Abstract: A 1.8-V 14-b 12-MS/s pseudo-differential pipeline analog-to-digital converter (ADC) using a passive capacitor error-averaging technique and a nested CMOS gain-boosting technique is described. The converter is optimized for low-voltage low-power applications by applying an optimum stage-scaling algorithm at the architectural level and an opamp and comparator sharing technique at the circuit level. Prototyped in a 0.18-/spl mu/m 6M-1P CMOS process, this converter achieves a peak signal-to-noise plus distortion ratio (SNDR) of 75.5 dB and a 103-dB spurious-free dynamic range (SFDR) without trimming, calibration, or dithering. With a 1-MHz analog input, the maximum differential nonlinearity is 0.47 LSB and the maximum integral nonlinearity is 0.54 LSB. The large analog bandwidth of the front-end sample-and-hold circuit is achieved using bootstrapped thin-oxide transistors as switches, resulting in an SFDR of 97 dB when a 40-MHz full-scale input is digitized. The ADC occupies an active area of 10 mm/sup 2/ and dissipates 98 mW.

271 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of this paper is not to suggest that the conversion of vibrations is the best or most versatile method to scavenge ambient power, but to study its potential as a viable power source for applications where vibrations are present.

2,727 citations

Proceedings ArticleDOI
12 Dec 2009
TL;DR: Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taking into account configuring clusters with 4 cores gives thebest EDA2P and EDAP.
Abstract: This paper introduces McPAT, an integrated power, area, and timing modeling framework that supports comprehensive design space exploration for multicore and manycore processor configurations ranging from 90nm to 22nm and beyond. At the microarchitectural level, McPAT includes models for the fundamental components of a chip multiprocessor, including in-order and out-of-order processor cores, networks-on-chip, shared caches, integrated memory controllers, and multiple-domain clocking. At the circuit and technology levels, McPAT supports critical-path timing modeling, area modeling, and dynamic, short-circuit, and leakage power modeling for each of the device types forecast in the ITRS roadmap including bulk CMOS, SOI, and double-gate transistors. McPAT has a flexible XML interface to facilitate its use with many performance simulators. Combined with a performance simulator, McPAT enables architects to consistently quantify the cost of new ideas and assess tradeoffs of different architectures using new metrics like energy-delay-area2 product (EDA2P) and energy-delay-area product (EDAP). This paper explores the interconnect options of future manycore processors by varying the degree of clustering over generations of process technologies. Clustering will bring interesting tradeoffs between area and performance because the interconnects needed to group cores into clusters incur area overhead, but many applications can make good use of them due to synergies of cache sharing. Combining power, area, and timing results of McPAT with performance simulation of PARSEC benchmarks at the 22nm technology node for both common in-order and out-of-order manycore designs shows that when die cost is not taken into account clustering 8 cores together gives the best energy-delay product, whereas when cost is taken into account configuring clusters with 4 cores gives the best EDA2P and EDAP.

2,487 citations

Journal ArticleDOI
29 Apr 2003
TL;DR: Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices and different circuit techniques to reduce the leakage power consumption are explored.
Abstract: High leakage current in deep-submicrometer regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially for low-power applications. This paper reviews various transistor intrinsic leakage mechanisms, including weak inversion, drain-induced barrier lowering, gate-induced drain leakage, and gate oxide tunneling. Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices. Finally, the paper explores different circuit techniques to reduce the leakage power consumption.

2,281 citations

Proceedings ArticleDOI
17 Mar 2002
TL;DR: This paper takes the view that always using lowest energy paths may not be optimal from the point of view of network lifetime and long-term connectivity and proposes a new scheme called energy aware routing that uses sub-optimal paths occasionally to provide substantial gains.
Abstract: The recent interest in sensor networks has led to a number of routing schemes that use the limited resources available at sensor nodes more efficiently. These schemes typically try to find the minimum energy path to optimize energy usage at a node. In this paper we take the view that always using lowest energy paths may not be optimal from the point of view of network lifetime and long-term connectivity. To optimize these measures, we propose a new scheme called energy aware routing that uses sub-optimal paths occasionally to provide substantial gains. Simulation results are also presented that show increase in network lifetimes of up to 40% over comparable schemes like directed diffusion routing. Nodes also burn energy in a more equitable way across the network ensuring a more graceful degradation of service with time.

1,552 citations