scispace - formally typeset
Search or ask a question
Author

Borun D. Chowdhury

Bio: Borun D. Chowdhury is an academic researcher from University of South Carolina. The author has contributed to research in topics: Black hole & Hawking radiation. The author has an hindex of 31, co-authored 66 publications receiving 3417 citations. Previous affiliations of Borun D. Chowdhury include Ohio State University & Tata Institute of Fundamental Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors embed spherical Rindler space in asymptotically anti-de Sitter (AdS) spacetime and show that it carries a gravitational entropy proportional to the area of the hole.
Abstract: We embed spherical Rindler space---a geometry with a spherical hole in its center---in asymptotically anti-- de Sitter (AdS) spacetime and show that it carries a gravitational entropy proportional to the area of the hole. Spherical AdS-Rindler space is holographically dual to an ultraviolet sector of the boundary field theory given by restriction to a strip of finite duration in time. Because measurements have finite durations, local observers in the field theory can only access information about bounded spatial regions. We propose a notion of differential entropy that captures uncertainty about the state of a system left by the collection of local, finite-time observables. For two-dimensional conformal field theories we use holography and the strong subadditivity of entanglement to propose a formula for differential entropy and show that it precisely reproduces the areas of circular holes in ${\mathrm{AdS}}_{3}$. Extending the notion to field theories on strips with variable durations in time, we show more generally that differential entropy computes the areas of all closed, inhomogeneous curves on a spatial slice of ${\mathrm{AdS}}_{3}$. We discuss the extension to higher-dimensional field theories, the relation of differential entropy to entanglement between scales, and some implications for the emergence of space from the renormalization group flow of entangled field theories.

244 citations

Journal ArticleDOI
P. Adamson1, C. Ader1, M. P. Andrews1, N. Anfimov2  +255 moreInstitutions (38)
TL;DR: The first search for ν_{μ}→ν_{e} transitions by the NOvA experiment finds 6 events in the Far Detector, compared to a background expectation of 0.99±0.11(syst) events based on the Near Detector measurement.
Abstract: We report results from the first search for ν_{μ}→ν_{e} transitions by the NOvA experiment. In an exposure equivalent to 2.74×10^{20} protons on target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of 0.99±0.11(syst) events based on the Near Detector measurement. A secondary analysis observes 11 events with a background of 1.07±0.14(syst). The 3.3σ excess of events observed in the primary analysis disfavors 0.1π<δ_{CP}<0.5π in the inverted mass hierarchy at the 90% C.L.

242 citations

Journal ArticleDOI
M. A. Acero1, P. Adamson2, L. Aliaga2, T. Alion3  +206 moreInstitutions (46)
TL;DR: The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν(over ¯)_{μ} beam at a distance of 810 km, which is seen to favor the normal neutrino mass hierarchy.
Abstract: The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{μ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{μ}→ν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{μ}→ν[over ¯]_{μ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ.

198 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed the concept of entwinement, which is intended to capture the fine structure of the wavefunction. And they showed that the interior geometry up to the defect can be reconstructed from entwinements that is sensitive to the discretely gauged, fractionated degrees of freedom of the CFT.
Abstract: It is conventional to study the entanglement between spatial regions of a quantum field theory. However, in some systems entanglement can be dominated by “internal”, possibly gauged, degrees of freedom that are not spatially organized, and that can give rise to gaps smaller than the inverse size of the system. In a holographic context, such small gaps are associated to the appearance of horizons and singularities in the dual spacetime. Here, we propose a concept of entwinement, which is intended to capture this fine structure of the wavefunction. Holographically, entwinement probes the entanglement shadow — the region of spacetime not probed by the minimal surfaces that compute spatial entanglement in the dual field theory. We consider the simplest example of this scenario — a 2d conformal field theory (CFT) that is dual to a conical defect in AdS3 space. Following our previous work, we show that spatial entanglement in the CFT reproduces spacetime geometry up to a finite distance from the conical defect. We then show that the interior geometry up to the defect can be reconstructed from entwinement that is sensitive to the discretely gauged, fractionated degrees of freedom of the CFT. Entwinement in the CFT is related to non-minimal geodesics in the conical defect geometry, suggesting a potential quantum information theoretic meaning for these objects in a holographic context. These results may be relevant for the reconstruction of black hole interiors from a dual field theory.

181 citations

Journal ArticleDOI
P. Adamson1, L. Aliaga1, D. J. Ambrose2, Nikolay Anfimov3  +174 moreInstitutions (40)
TL;DR: In this article, an improved measurement of the NOvA experiment is reported, showing that the hypothesis of inverted mass hierarchy with θ-23 in the lower octant is disfavored at greater than 93% C.L. for all values of δ-CP.
Abstract: Results are reported from an improved measurement of ν_{μ}→ν_{e} transitions by the NOvA experiment. Using an exposure equivalent to 6.05×10^{20} protons on target, 33 ν_{e} candidates are observed with a background of 8.2±0.8 (syst.). Combined with the latest NOvA ν_{μ} disappearance data and external constraints from reactor experiments on sin^{2}2θ_{13}, the hypothesis of inverted mass hierarchy with θ_{23} in the lower octant is disfavored at greater than 93% C.L. for all values of δ_{CP}.

177 citations


Cited by
More filters
Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations

01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue that the following three statements cannot all be true: (i) Hawking radiation is in a pure state, (ii) the information carried by the radiation is emitted from the region near the horizon, with low energy effective field theory valid beyond some microscopic distance from the horizon.
Abstract: We argue that the following three statements cannot all be true: (i) Hawking radiation is in a pure state, (ii) the information carried by the radiation is emitted from the region near the horizon, with low energy effective field theory valid beyond some microscopic distance from the horizon, and (iii) the infalling observer encounters nothing unusual at the horizon. Perhaps the most conservative resolution is that the infalling observer burns up at the horizon. Alternatives would seem to require novel dynamics that nevertheless cause notable violations of semiclassical physics at macroscopic distances from the horizon.

1,476 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the EPR pair can be interpreted as maximally entangled states of two black holes, and they suggest that similar bridges might be present for more general entangled states.
Abstract: General relativity contains solutions in which two distant black holes are connected through the interior via a wormhole, or Einstein-Rosen bridge. These solutions can be interpreted as maximally entangled states of two black holes that form a complex EPR pair. We suggest that similar bridges might be present for more general entangled states. In the case of entangled black holes one can formulate versions of the AMPS(S) paradoxes and resolve them. This suggests possible resolutions of the firewall paradoxes for more general situations.

1,446 citations