scispace - formally typeset
Search or ask a question
Author

Boya Radha

Bio: Boya Radha is an academic researcher from University of Manchester. The author has contributed to research in topics: Physics & Ion. The author has an hindex of 25, co-authored 61 publications receiving 2681 citations. Previous affiliations of Boya Radha include Agency for Science, Technology and Research & Northwestern University.


Papers
More filters
Journal ArticleDOI
07 Sep 2016-Nature
TL;DR: This work reports the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers, using graphene and its multilayers as archetypalTwo-dimensional materials to demonstrate this technology.
Abstract: Nanometre-scale graphitic capillaries with atomically flat walls are engineered and studied, revealing unexpectedly fast transport of liquid water through channels that accommodate only a few layers of water. Artificial nanometre-sized capillaries have enabled new research and led to the emergence of nanofluidics, but surface roughness in particular makes it very challenging to exactly control their dimensions. Andre Geim and colleagues now show that van der Waals assembly can produce narrow and smooth capillaries that have atomically flat top and bottom graphite sheets, separated by spacers made from a precisely controlled number of graphene layers. Water transport through the channels, which range in height from a single atomic plane to dozens of them, is unexpectedly fast and speeds up further in channels that accommodate only a few layers of water. The fabrication method is expected to give access to a wide range of capillaries with atomically precise sizes, and with permeation properties that are tunable by the choice of two-dimensional material used for creating the channel walls. Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications1. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics2,3,4. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly5, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals6 with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to angstrom precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

470 citations

Journal ArticleDOI
TL;DR: Capacitance measurements reveal a low dielectric constant for atomically thin layers of water next to solid surfaces and reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2, while the electrically dead layer is found to be two to three molecules thick.
Abstract: The dielectric constant of interfacial water has been predicted to be smaller than that of bulk water (= 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically-flat walls separated by various distances down to 1 nm. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane dielectric constant is only approximately 2. The electrically dead layer is found to be two to three molecules thick. These results provide much needed feedback for theories describing water-mediated surface interactions and behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement.

469 citations

Journal ArticleDOI
27 Oct 2017-Science
TL;DR: This work reports ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal, and finds that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility.
Abstract: In the field of nanofluidics, it has been an ultimate but seemingly distant goal to controllably fabricate capillaries with dimensions approaching the size of small ions and water molecules. We report ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal. The atomically flat angstrom-scale slits exhibit little surface charge, allowing elucidation of the role of steric effects. We find that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility. The confinement also leads to a notable asymmetry between anions and cations of the same diameter. Our results provide a platform for studying the effects of angstrom-scale confinement, which is important for the development of nanofluidics, molecular separation, and other nanoscale technologies.

372 citations

Journal ArticleDOI
22 Jun 2018-Science
TL;DR: In this paper, local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane e is only 2.
Abstract: The dielectric constant e of interfacial water has been predicted to be smaller than that of bulk water (e ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane e is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement.

354 citations

Journal ArticleDOI
01 Jan 2016-Science
TL;DR: It is shown that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes, and the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment.
Abstract: One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Using electrical measurements and mass spectrometry, we found that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of ≈10 at room temperature. The isotope effect is attributed to a difference of ≈60 milli–electron volts between zero-point energies of incident protons and deuterons, which translates into the equivalent difference in the activation barriers posed by two-dimensional crystals. In addition to providing insight into the proton transport mechanism, the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment.

242 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jun 2005

3,154 citations

01 Jan 2016

1,715 citations

Journal ArticleDOI
TL;DR: This review discusses efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions, and explores the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies.
Abstract: Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micro...

1,376 citations

Journal ArticleDOI
TL;DR: A simple scalable method is demonstrated to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl and decrease exponentially with decreasing sieve size, but water transport is weakly affected.
Abstract: Ion permeation and selectivity of graphene oxide membranes with sub-nm channels dramatically alters with the change in interlayer distance due to dehydration effects whereas permeation of water molecules remains largely unaffected. Graphene oxide membranes show exceptional molecular permeation properties, with promise for many applications1,2,3,4,5. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ∼9 A (ref. 4), which is larger than the diameters of hydrated ions of common salts4,6. The cutoff is determined by the interlayer spacing (d) of ∼13.5 A, typical for graphene oxide laminates that swell in water2,4. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here, we describe how to control d by physical confinement and achieve accurate and tunable ion sieving. Membranes with d from ∼9.8 A to 6.4 A are demonstrated, providing a sieve size smaller than the diameters of hydrated ions. In this regime, ion permeation is found to be thermally activated with energy barriers of ∼10–100 kJ mol–1 depending on d. Importantly, permeation rates decrease exponentially with decreasing sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for the entry of water molecules and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.

1,297 citations