scispace - formally typeset
Search or ask a question
Author

Boyuan Yang

Other affiliations: University of Manchester
Bio: Boyuan Yang is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Fault (power engineering) & Sparse approximation. The author has an hindex of 12, co-authored 16 publications receiving 1426 citations. Previous affiliations of Boyuan Yang include University of Manchester.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper attempts to present a comprehensive review of AI algorithms in rotating machinery fault diagnosis, from both the views of theory background and industrial applications.

1,287 citations

Journal ArticleDOI
Ruonan Liu1, Guotao Meng1, Boyuan Yang1, Chuang Sun1, Xuefeng Chen1 
TL;DR: Inspired by the idea of CNN, a novel diagnosis framework based on the characteristics of industrial vibration signals is developed, called dislocated time series CNN (DTS-CNN), which is composed of dislocate layer, convolutional layer, sub-sampling layer and fully connected layer.
Abstract: In most current intelligent diagnosis methods, fault classifiers of electric machine are built based on complex handcrafted features extractor from raw signals, which depend on prior knowledge and is difficult to implement intelligentization authentically. In addition, the increasingly complicated industrial structures and data make handcrafted features extractors less suited. Convolutional neural network (CNN) provides an efficient method to act on raw signals directly by weight sharing and local connections without feature extractors. However, effective as CNN works on image recognition, it does not work well in industrial applications due to the differences between image and industrial signals. Inspired by the idea of CNN, we develop a novel diagnosis framework based on the characteristics of industrial vibration signals, which is called dislocated time series CNN (DTS-CNN). The DTS-CNN architecture is composed of dislocate layer, convolutional layer, sub-sampling layer and fully connected layer. By adding a dislocate layer, this model can extract the relationship between signals with different intervals in periodic mechanical signals, thereby overcome the weaknesses of traditional CNNs and is more applicable for modern electric machines, especially under nonstationary conditions. Experiments under constant and nonstationary conditions are performed on a machine fault simulator to validate the proposed framework. The results and comparison with respect to the state of the art in the field is illustrated in detail, which highlights the superiority of the proposed method in industrial applications.

274 citations

Journal ArticleDOI
TL;DR: An intelligent RUL prediction method based on a double-CNN model architecture that shows higher prediction accuracy and robustness and an intermediate reliability variable is first calculated in this paper, instead of directly predicting the RUL value.
Abstract: Remaining useful life (RUL) prediction has been increasingly considered in many industrial fields for the reliability and safety of their systems. As a data analysis tool of deep learning, deep convolutional neural network (CNN) shows great potential for RUL prediction. This paper proposes an intelligent RUL prediction method based on a double-CNN model architecture. Given the powerful feature extraction capability of CNN, the proposed method is fed with original vibration signals with no need to resort to any feature extractor, which can also retain the useful information in maximum. The prediction includes two stages: first, incipient fault point is identified by the first CNN model and a proposed “3/5” principle; then, the second CNN model is constructed for RUL prediction. In practice, RULs of identical components are different from each other, which poses a major challenge in RUL prediction. To overcome this problem, an intermediate reliability variable is first calculated in this paper, instead of directly predicting the RUL value. Then, a mapping algorithm is proposed to map reliability to RUL. To demonstrate the effectiveness of the proposed method, data of four tests of bearing degradation are utilized for RUL prediction. Compared with state-of-the-art methods, the proposed method shows higher prediction accuracy and robustness. The prediction results and evaluation indexes demonstrated the effectiveness and superiority of the proposed method.

218 citations

Journal ArticleDOI
TL;DR: In this article, a multiscale kernel based residual convolutional neural network (CNN) is proposed for motor fault diagnosis with results and comparisons with state-of-the-art methods highlight the superiority of the proposed method.
Abstract: Motor fault diagnosis is imperative to enhance the reliability and security of industrial systems. However, since motors are often operated under nonstationary conditions, the high complexity of vibration signals raises notable difficulties for fault diagnosis. Therefore, considering the special physical characteristics of motor signals under nonstationary conditions, in this article, we propose a multiscale kernel based residual convolutional neural network (CNN) for motor fault diagnosis. Our contributions mainly fall into two aspects. First, we notice that each motor fault category has various patterns in vibration signals due to the changing operational conditions of the motor. To capture these patterns, a multiscale kernel algorithm is applied in the CNN architecture. Second, since the motor vibration signals are made up of many different components from different transfer paths, they are very complex and variable. To enable the architecture to extract fault features from deep and hierarchical representation spaces, sufficient depth of the network is needed, which will lead to the degradation problem. In the proposed method, residual learning is embedded into the multiscale kernel CNN to avoid performance degradation and build a deeper network. To validate the effectiveness of the proposed networks, a normal motor and five motors with different failures are tested. The results and comparisons with state-of-the-art methods highlight the superiority of the proposed method.

181 citations

Journal ArticleDOI
TL;DR: A novel data-driven fault diagnosis method based on sparse representation and shift-invariant dictionary learning is proposed, which proves the effectiveness and robustness of the proposed method and the comparison with the state-of-the-art method is illustrated.
Abstract: It is always a primary challenge in fault diagnosis of a wind turbine generator to extract fault character information under strong noise and nonstationary condition. As a novel signal processing method, sparse representation shows excellent performance in time–frequency analysis and feature extraction. However, its result is directly influenced by dictionary, whose atoms should be as similar with signal's inner structure as possible. Due to the variability of operation environment and physical structure in industrial systems, the patterns of impulse signals are changing over time, which makes creating a proper dictionary even harder. To solve the problem, a novel data-driven fault diagnosis method based on sparse representation and shift-invariant dictionary learning is proposed. The impulse signals at different locations with the same characteristic can be represented by only one atom through shift operation. Then, the shift-invariant dictionary is generated by taking all the possible shifts of a few short atoms and, consequently, is more applicable to represent long signals that in the same pattern appear periodically. Based on the learnt shift-invariant dictionary, the coefficients obtained can be sparser, with the extracted impulse signal being closer to the real signal. Finally, the time–frequency representation of the impulse component is obtained with consideration of both the Wigner–Ville distribution of every atom and the corresponding sparse coefficient. The excellent performance of different fault diagnoses in a fault simulator and a wind turbine proves the effectiveness and robustness of the proposed method. Meanwhile, the comparison with the state-of-the-art method is illustrated, which highlights the superiority of the proposed method.

159 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.

1,569 citations

Journal ArticleDOI
TL;DR: This paper attempts to present a comprehensive review of AI algorithms in rotating machinery fault diagnosis, from both the views of theory background and industrial applications.

1,287 citations

Journal ArticleDOI
TL;DR: A review and roadmap to systematically cover the development of IFD following the progress of machine learning theories and offer a future perspective is presented.

1,173 citations

Journal ArticleDOI
TL;DR: Experimental results and comprehensive comparison analysis have demonstrated the superiority of the proposed MSCNN approach, thus providing an end-to-end learning-based fault diagnosis system for WT gearbox without additional signal processing and diagnostic expertise.
Abstract: This paper proposes a novel intelligent fault diagnosis method to automatically identify different health conditions of wind turbine (WT) gearbox. Unlike traditional approaches, where feature extraction and classification are separately designed and performed, this paper aims to automatically learn effective fault features directly from raw vibration signals while classify the type of faults in a single framework, thus providing an end-to-end learning-based fault diagnosis system for WT gearbox without additional signal processing and diagnostic expertise. Considering the multiscale characteristics inherent in vibration signals of a gearbox, a new multiscale convolutional neural network (MSCNN) architecture is proposed to perform multiscale feature extraction and classification simultaneously. The proposed MSCNN incorporates multiscale learning into the traditional CNN architecture, which has two merits: 1) high-level fault features can be effectively learned by the hierarchical learning structure with multiple pairs of convolutional and pooling layers; and 2) multiscale learning scheme can capture complementary and rich diagnosis information at different scales. This greatly improves the feature learning ability and enables better diagnosis performance. The proposed MSCNN approach is evaluated through experiments on a WT gearbox test rig. Experimental results and comprehensive comparison analysis with respect to the traditional CNN and traditional multiscale feature extractors have demonstrated the superiority of the proposed method.

532 citations

Journal ArticleDOI
TL;DR: New deep learning methods, namely, deep residual shrinkage networks, are developed to improve the feature learning ability from highly noised vibration signals and achieve a high fault diagnosing accuracy.
Abstract: This article develops new deep learning methods, namely, deep residual shrinkage networks, to improve the feature learning ability from highly noised vibration signals and achieve a high fault diagnosing accuracy. Soft thresholding is inserted as nonlinear transformation layers into the deep architectures to eliminate unimportant features. Moreover, considering that it is generally challenging to set proper values for the thresholds, the developed deep residual shrinkage networks integrate a few specialized neural networks as trainable modules to automatically determine the thresholds, so that professional expertise on signal processing is not required. The efficacy of the developed methods is validated through experiments with various types of noise.

520 citations