scispace - formally typeset
Search or ask a question
Author

Brad A. Seibel

Bio: Brad A. Seibel is an academic researcher from University of South Florida St. Petersburg. The author has contributed to research in topics: Hypoxia (environmental) & Ocean acidification. The author has an hindex of 38, co-authored 105 publications receiving 7870 citations. Previous affiliations of Brad A. Seibel include University of South Florida & University of Rhode Island.


Papers
More filters
Journal ArticleDOI
TL;DR: Fabry et al. as discussed by the authors presented new observations, reviewed available data, and identified priorities for future research, based on regions, ecosystems, taxa, and physiological processes believed to be most vulnerable to ocean acidification.
Abstract: Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. - ICES Journal of Marine Science, 65: 414-432.Oceanic uptake of anthropogenic carbon dioxide (CO 2 ) is altering the seawater chemistry of the world’s oceans with consequences for marine biota. Elevated partial pressure of CO 2 (pCO 2 ) is causing the calcium carbonate saturation horizon to shoal in many regions, particularly in high latitudes and regions that intersect with pronounced hypoxic zones. The ability of marine animals, most importantly pteropod molluscs, foraminifera, and some benthic invertebrates, to produce calcareous skeletal structures is directly affected by seawater CO 2 chemistry. CO 2 influences the physiology of marine organisms as well through acid-base imbalance and reduced oxygen transport capacity. The few studies at relevant pCO 2 levels impede our ability to predict future impacts on foodweb dynamics and other ecosystem processes. Here we present new observations, review available data, and identify priorities for future research, based on regions, ecosystems, taxa, and physiological processes believed to be most vulnerable to ocean acidification. We conclude that ocean acidification and the synergistic impacts of other anthropogenic stressors provide great potential for widespread changes to marine ecosystems.

1,951 citations

Journal ArticleDOI
05 Jan 2018-Science
TL;DR: Improved numerical models of oceanographic processes that control oxygen depletion and the large-scale influence of altered biogeochemical cycles are needed to better predict the magnitude and spatial patterns of deoxygenation in the open ocean, as well as feedbacks to climate.
Abstract: BACKGROUND Oxygen concentrations in both the open ocean and coastal waters have been declining since at least the middle of the 20th century. This oxygen loss, or deoxygenation, is one of the most important changes occurring in an ocean increasingly modified by human activities that have raised temperatures, CO 2 levels, and nutrient inputs and have altered the abundances and distributions of marine species. Oxygen is fundamental to biological and biogeochemical processes in the ocean. Its decline can cause major changes in ocean productivity, biodiversity, and biogeochemical cycles. Analyses of direct measurements at sites around the world indicate that oxygen-minimum zones in the open ocean have expanded by several million square kilometers and that hundreds of coastal sites now have oxygen concentrations low enough to limit the distribution and abundance of animal populations and alter the cycling of important nutrients. ADVANCES In the open ocean, global warming, which is primarily caused by increased greenhouse gas emissions, is considered the primary cause of ongoing deoxygenation. Numerical models project further oxygen declines during the 21st century, even with ambitious emission reductions. Rising global temperatures decrease oxygen solubility in water, increase the rate of oxygen consumption via respiration, and are predicted to reduce the introduction of oxygen from the atmosphere and surface waters into the ocean interior by increasing stratification and weakening ocean overturning circulation. In estuaries and other coastal systems strongly influenced by their watershed, oxygen declines have been caused by increased loadings of nutrients (nitrogen and phosphorus) and organic matter, primarily from agriculture; sewage; and the combustion of fossil fuels. In many regions, further increases in nitrogen discharges to coastal waters are projected as human populations and agricultural production rise. Climate change exacerbates oxygen decline in coastal systems through similar mechanisms as those in the open ocean, as well as by increasing nutrient delivery from watersheds that will experience increased precipitation. Expansion of low-oxygen zones can increase production of N 2 O, a potent greenhouse gas; reduce eukaryote biodiversity; alter the structure of food webs; and negatively affect food security and livelihoods. Both acidification and increasing temperature are mechanistically linked with the process of deoxygenation and combine with low-oxygen conditions to affect biogeochemical, physiological, and ecological processes. However, an important paradox to consider in predicting large-scale effects of future deoxygenation is that high levels of productivity in nutrient-enriched coastal systems and upwelling areas associated with oxygen-minimum zones also support some of the world’s most prolific fisheries. OUTLOOK Major advances have been made toward understanding patterns, drivers, and consequences of ocean deoxygenation, but there is a need to improve predictions at large spatial and temporal scales important to ecosystem services provided by the ocean. Improved numerical models of oceanographic processes that control oxygen depletion and the large-scale influence of altered biogeochemical cycles are needed to better predict the magnitude and spatial patterns of deoxygenation in the open ocean, as well as feedbacks to climate. Developing and verifying the next generation of these models will require increased in situ observations and improved mechanistic understanding on a variety of scales. Models useful for managing nutrient loads can simulate oxygen loss in coastal waters with some skill, but their ability to project future oxygen loss is often hampered by insufficient data and climate model projections on drivers at appropriate temporal and spatial scales. Predicting deoxygenation-induced changes in ecosystem services and human welfare requires scaling effects that are measured on individual organisms to populations, food webs, and fisheries stocks; considering combined effects of deoxygenation and other ocean stressors; and placing an increased research emphasis on developing nations. Reducing the impacts of other stressors may provide some protection to species negatively affected by low-oxygen conditions. Ultimately, though, limiting deoxygenation and its negative effects will necessitate a substantial global decrease in greenhouse gas emissions, as well as reductions in nutrient discharges to coastal waters.

1,469 citations

Journal ArticleDOI
05 Jun 2015-Science
TL;DR: The combined effects of warming and O2 loss this century are projected to reduce the upper ocean’s metabolic index by ~20% globally and by ~50% in northern high-latitude regions, forcing poleward and vertical contraction of metabolically viable habitats and species ranges.
Abstract: Warming of the oceans and consequent loss of dissolved oxygen (O2) will alter marine ecosystems, but a mechanistic framework to predict the impact of multiple stressors on viable habitat is lacking. Here, we integrate physiological, climatic, and biogeographic data to calibrate and then map a key metabolic index—the ratio of O2 supply to resting metabolic O2 demand—across geographic ranges of several marine ectotherms. These species differ in thermal and hypoxic tolerances, but their contemporary distributions are all bounded at the equatorward edge by a minimum metabolic index of ~2 to 5, indicative of a critical energetic requirement for organismal activity. The combined effects of warming and O2 loss this century are projected to reduce the upper ocean’s metabolic index by ~20% globally and by ~50% in northern high-latitude regions, forcing poleward and vertical contraction of metabolically viable habitats and species ranges.

501 citations

Journal ArticleDOI
TL;DR: Given the stable presence of very low O2 levels in the minima, the primary adaptations of animals living within them are those that support aerobic metabolism by giving the animals remarkable abilities to extract O2 from water.
Abstract: Zones of minimum oxygen level are found at intermediate depths in most of the world's oceans and, although the oxygen partial pressure in some of these 'oxygen minimum layers' is only a fraction of a kilopascal, populations of pelagic metazoans exist there. These oxygen minimum layers are areas of the water column and the associated benthos with stable conditions of continuously low oxygen level and low temperature at intermediate depths (400-1000 m depth) over vast areas. Off California, where POat the oxygen minimum is 0.8 kPa, there are abundant populations of animals both in the water column and on the bottom. Farther to the south in the eastern tropical Pacific, oxygen partial pressures of less than approximately 0.4 kPa result in very low biomasses and diversity of animals at minimum layer depths. At the minimum oxygen levels found off California, most animals which inhabit the minimum zones appear to support their routine metabolic demands via aerobic metabolism. They do this by being very effective at removing oxygen from water. Among the adaptations of pelagic crustaceans to these conditions are: (1) enhanced ventilatory abilities, (2) enhanced percentage removal of O 2 from the ventilatory stream, (3) large gill surface areas, (4) short diffusion distances from the water to the blood, and (5) hemocyanin respiratory proteins with a very high affinity for O2, high cooperativity and large Bohr effects. The lower O2 consumption rates of many deeper-living species are also functionally adaptive in that they facilitate aerobic survival at low PO•. However, they are not adaptations to the minimum layer, since similarly low rates are found in the same and comparable species living at the same depths in regions without well-developed minima, and these animals are unable to survive at the low PO• values of the minima. While anaerobic metabolism may be important for metabolic rates above the routine level for most animals in the minimum layer, there is little evidence for the use of sustained anaerobiosis in the species studied. In summary, given the stable presence of very low O 2 levels in the minima, the primary adaptations of animals living within them are those that support aerobic metabolism by giving the animals remarkable abilities to extract O 2 from water. These abilities are notably better than those of animals adapted to unstable hypoxic environments, such as intertidal mudflats, while the latter animals rely to a much greater extent on anaerobiosis and perhaps on metabolic suppression to survive periods of anoxia. Summary

386 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the synergism between ocean acidification, global warming, and expanding hypoxia will compress the habitable depth range of the jumbo squid, and these interactions may ultimately define the long-term fate of this commercially and ecologically important predator.
Abstract: By the end of this century, anthropogenic carbon dioxide (CO2) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature. Reduced aerobic and locomotory scope in warm, high-CO2 surface waters will presumably impair predator–prey interactions with cascading consequences for growth, reproduction, and survival. Moreover, as the OML shoals, squids will have to retreat to these shallower, less hospitable, waters at night to feed and repay any oxygen debt that accumulates during their diel vertical migration into the OML. Thus, we demonstrate that, in the absence of adaptation or horizontal migration, the synergism between ocean acidification, global warming, and expanding hypoxia will compress the habitable depth range of the species. These interactions may ultimately define the long-term fate of this commercially and ecologically important predator.

347 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: 13 models of the ocean–carbon cycle are used to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide and indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
Abstract: Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

4,244 citations

Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: It is found that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years.
Abstract: The coming centuries may see more ocean acidification than the past 300 million years. Most carbon dioxide released into the atmosphere as a result of the burning of fossil fuels will eventually be absorbed by the ocean1, with potentially adverse consequences for marine biota2,3,4. Here we quantify the changes in ocean pH that may result from this continued release of CO2 and compare these with pH changes estimated from geological and historical records. We find that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years, with the possible exception of those resulting from rare, extreme events such as bolide impacts or catastrophic methane hydrate degassing.

3,060 citations