scispace - formally typeset
Search or ask a question
Author

Brad Abbott

Bio: Brad Abbott is an academic researcher from University of Oklahoma. The author has contributed to research in topics: Large Hadron Collider & Higgs boson. The author has an hindex of 137, co-authored 1566 publications receiving 98604 citations. Previous affiliations of Brad Abbott include Aix-Marseille University & Purdue University.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2818 moreInstitutions (192)
TL;DR: In this article, the authors reported evidence of triple gauge boson production with the 8 TeV LHC data set, and measured the fiducial cross section for this process in a data sample corresponding to an integrated luminosity of 20.3 fb(-1).
Abstract: This Letter reports evidence of triple gauge boson production pp -> W(l nu)gamma gamma + X, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb(-1), collected by the ATLAS detector in 2012. Events are selected using the W boson decay to e nu or mu nu as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.

51 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2913 moreInstitutions (212)
TL;DR: In this paper, the electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex, which can be described by the complex parameters of an effective Lagran...
Abstract: The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagran ...

51 citations

Journal ArticleDOI
V. M. Abazov1, Brad Abbott2, B. S. Acharya3, M. R. Adams4  +388 moreInstitutions (71)
TL;DR: In this article, a measurement of the time-integrated flavor-specific semileptonic charge asymmetry in the decays of B{sub s}{sup 0} mesons that have undergone flavor mixing, a{sub sl}{sup s} = [-1.08 {+-} 0.72(stat) {+ −1.17(syst)]% which is the most precise measurement and in agreement with the standard model prediction.
Abstract: We present a measurement of the time-integrated flavor-specific semileptonic charge asymmetry in the decays of B{sub s}{sup 0} mesons that have undergone flavor mixing, a{sub sl}{sup s}, using B{sub s}{sup 0} ({bar B}{sub s}{sup 0}) {yields} D{sub s}{sup {-+}} {mu}{sup {+-}} X decays, with D{sub s}{sup {-+}} {yields} {phi}{pi}{sup {-+}} and {phi} {yields} K{sup +}K{sup -}, using 10.4 fb{sup -1} of proton-antiproton collisions collected by the D0 detector during Run II at the Fermilab Tevatron Collider. A fit to the difference between the time-integrated D{sub s}{sup -} and D{sub s}{sup +} mass distributions of the B{sub s}{sup 0} and {bar B}{sub s}{sup 0} candidates yields the flavor-specific asymmetry a{sub sl}{sup s} = [-1.08 {+-} 0.72(stat) {+-} 0.17(syst)]% which is the most precise measurement and in agreement with the standard model prediction.

51 citations

Journal ArticleDOI
Georges Aad, T. Abajyan1, Brad Abbott2, Jalal Abdallah3  +2877 moreInstitutions (180)
TL;DR: In this article, a search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb-1 of sqrt(s)=7 TeV pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented.
Abstract: A search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb-1 of sqrt(s)=7 TeV pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented. The search uses a set of variables carrying information on the event kinematics transverse and parallel to the beam line that are sensitive to several topologies expected in supersymmetry. Mutually exclusive final states are defined, allowing a combination of all channels to increase the search sensitivity. No deviation from the Standard Model expectation is observed. Upper limits at 95% confidence level on fiducial cross-sections for the production of new particles are extracted. Results are interpreted in the context of the constrained minimal supersymmetric extension to the Standard Model and in supersymmetry-inspired models with diverse, high-multiplicity final states.

51 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3013 moreInstitutions (182)
TL;DR: In this article, a search for the Standard Model Higgs boson in the two photon decay channel is reported, using 1.08 fb−1 of proton-proton collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS detector.

51 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations