scispace - formally typeset
Search or ask a question
Author

Bradford P. Holden

Bio: Bradford P. Holden is an academic researcher from University of California, Santa Cruz. The author has contributed to research in topics: Galaxy & Redshift. The author has an hindex of 62, co-authored 167 publications receiving 12495 citations. Previous affiliations of Bradford P. Holden include University of Chicago & National Science Foundation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the galaxy size-mass distribution over the redshift range 0 3 × 10{sup 9} M {sub ☉}, and steep, R{sub eff}∝M{sub ∗}{sup 0.75}, for early-type galaxies with stellar mass > 2 × 10,sup 10} M{sub ǫ, and the intrinsic scattermore is ≲0.2 dex for all galaxy types and redshifts.
Abstract: Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 3 × 10{sup 9} M {sub ☉}, and steep, R{sub eff}∝M{sub ∗}{sup 0.75}, for early-type galaxies with stellar mass >2 × 10{sup 10} M {sub ☉}. The intrinsic scattermore » is ≲0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (∼10{sup 11} M {sub ☉}), compact (R {sub eff} < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.« less

1,004 citations

Journal ArticleDOI
TL;DR: In this paper, the authors determined the sizes of these quiescent galaxies using deep, high-resolution images obtained with HST/NIC2 and laser guide star (LGS) assisted Keck/adaptive optics (AO).
Abstract: Using deep near-infrared spectroscopy, Kriek et al. found that ∼45% of massive galaxies at have evolved z ∼ 2.3 stellar populations and little or no ongoing star formation. Here we determine the sizes of these quiescent galaxies using deep, high-resolution images obtained with HST/NIC2 and laser guide star (LGS)–assisted Keck/adaptive optics (AO). Considering that their median stellar mass is , the galaxies are remarkably small, with 11 1.7 # 10 M, a median effective radius kpc. Galaxies of similar mass in the nearby universe have sizes of ≈5 kpc and r p 0.9 e average stellar densities that are 2 orders of magnitude lower than the galaxies. These results extend earlier z ∼ 2.3 work at and confirm previous studies at that lacked spectroscopic redshifts and imaging of sufficient z ∼ 1.5 z 1 2 resolution to resolve the galaxies. Our findings demonstrate that fully assembled early-type galaxies make up at most ∼10% of the population of K-selected quiescent galaxies at , effectively ruling out simple monolithic z ∼ 2.3 models for their formation. The galaxies must evolve significantly after , through dry mergers or other z ∼ 2.3 processes, consistent with predictions from hierarchical models. Subject headings: cosmology: observations — galaxies: evolution — galaxies: formation

876 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the morphology-density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys on board the Hubble Space Telescope.
Abstract: We measure the morphology--density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys on board the Hubble Space Telescope. Simulations and independent comparisons of ourvisually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to zmag = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and z = 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 = 0.72 +/- 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities >= 40 galaxies/Mpc^2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Spiral+Irr galaxies relative to the local galaxy population. The Elliptical fraction - density relation exhibits no significant evolution between z = 1 and z = 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.

407 citations

Journal ArticleDOI
TL;DR: The morphology-density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope were measured in this article.
Abstract: We measure the morphology-density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope. Simulations and independent comparisons of our visually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to z850 = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work; specifically, the growth in the bulge-dominated galaxy fraction, fE+S0, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and Σ ≥ 500 galaxies Mpc-2, we find fE+S0 = 0.72 ± 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities Σ 40 galaxies Mpc-2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Sp+Irr galaxies relative to the local galaxy population. The fE-density relation exhibits no significant evolution between z = 1 and 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.

391 citations

Journal ArticleDOI
TL;DR: In this article, a flexible light deflection field was constructed to predict the appearance and positions of counterimages of the largest known gravitational lens, A1689, and the model was refined as new counterimages were identified and incorporated to improve the model, yielding a total of 106 images of 30 multiply lensed background galaxies.
Abstract: We analyze deep multicolor Advanced Camera images of the largest known gravitational lens, A1689. Radial and tangential arcs delineate the critical curves in unprecedented detail, and many small counterimages are found near the center of mass. We construct a flexible light deflection field to predict the appearance and positions of counterimages. The model is refined as new counterimages are identified and incorporated to improve the model, yielding a total of 106 images of 30 multiply lensed background galaxies, spanning a wide redshift range, 1.0 < z < 5.5. The resulting mass map is more circular in projection than the clumpy distribution of cluster galaxies, and the light is more concentrated than the mass within r < 50 kpc h-1. The projected mass profile flattens steadily toward the center with a shallow mean slope of d log ?/d log r -0.55 ? 0.1, over the observed range r < 250 kpc h-1, matching well an NFW profile, but with a relatively high concentration, Cvir = 8.2. A softened isothermal profile (rcore = 20 ? 2'') is not conclusively excluded, illustrating that lensing constrains only projected quantities. Regarding cosmology, we clearly detect the purely geometric increase of bend angles with redshift. The dependence on the cosmological parameters is weak owing to the proximity of A1689, z = 0.18, constraining the locus, ?M + ?? ? 1.2. This consistency with standard cosmology provides independent support for our model, because the redshift information is not required to derive an accurate mass map. Similarly, the relative fluxes of the multiple images are reproduced well by our best-fitting lens model.

341 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations

Journal ArticleDOI
TL;DR: In this article, a simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, BH density, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) was proposed to fit the three-year WMAP temperature and polarization data.
Abstract: A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits not only the three year WMAP temperature and polarization data, but also small scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best fit values for cosmological parameters for the power-law flat LCDM model are (Omega_m h^2, Omega_b h^2, h, n_s, tau, sigma_8) = 0.1277+0.0080-0.0079, 0.02229+-0.00073, 0.732+0.031-0.032, 0.958+-0.016, 0.089+-0.030, 0.761+0.049-0.048). The three year data dramatically shrink the allowed volume in this six dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, the WMAP data_alone_ require dark matter, and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n_s=1, r=0). Models that suppress large-scale power through a running spectral index or a large-scale cut-off in the power spectrum are a better fit to the WMAP and small scale CMB data than the power-law LCDM model: however, the improvement in the fit to the WMAP data is only Delta chi^2 = 3 for 1 extra degree of freedom. The combination of WMAP and other astronomical data yields significant constraints on the geometry of the universe, the equation of state of the dark energy, the gravitational wave energy density, and neutrino properties. Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps.

6,002 citations

Journal ArticleDOI
TL;DR: A review of dark energy can be found in this paper, where the authors present the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.
Abstract: Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein's cosmological constant, \ensuremath{\Lambda}; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant \ensuremath{\Lambda}. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lema\^{\i}tre model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein--de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.

4,783 citations

Journal ArticleDOI
TL;DR: In this paper, a fast Markov chain Monte Carlo exploration of cosmological parameter space is presented, which combines data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis.
Abstract: We present a fast Markov chain Monte Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent cosmic microwave background ~CMB! experiments and provide parameter constraints, including s 8, from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass ( mn&0.3 eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendixes we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters.

3,550 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations