scispace - formally typeset
Search or ask a question
Author

Brahatheeswaran Dhandayuthapani

Other affiliations: Electronics Research Center
Bio: Brahatheeswaran Dhandayuthapani is an academic researcher from Toyo University. The author has contributed to research in topics: Nanofiber & Electrospinning. The author has an hindex of 5, co-authored 5 publications receiving 1333 citations. Previous affiliations of Brahatheeswaran Dhandayuthapani include Electronics Research Center.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the different types of scaffolds with their material properties is discussed and the fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated.
Abstract: Current strategies of regenerative medicine are focused on the restoration of pathologically altered tissue architectures by transplantation of cells in combination with supportive scaffolds and biomolecules. In recent years, considerable interest has been given to biologically active scaffolds which are based on similar analogs of the extracellular matrix that have induced synthesis of tissues and organs. To restore function or regenerate tissue, a scaffold is necessary that will act as a temporary matrix for cell proliferation and extracellular matrix deposition, with subsequent ingrowth until the tissues are totally restored or regenerated. Scaffolds have been used for tissue engineering such as bone, cartilage, ligament, skin, vascular tissues, neural tissues, and skeletal muscle and as vehicle for the controlled delivery of drugs, proteins, and DNA. Various technologies come together to construct porous scaffolds to regenerate the tissues/organs and also for controlled and targeted release of bioactive agents in tissue engineering applications. In this paper, an overview of the different types of scaffolds with their material properties is discussed. The fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated.

1,480 citations

Journal ArticleDOI
TL;DR: The obtained results confirmed the potential for the use of the electrospun QD-encapsulated fluorescent nanofiber mats as scaffolds for tissue engineering.
Abstract: New hybrid quantum dot (QD)/nanofibers have potential applications in a variety of fields. A novel fluorescent nanocomposite nanofiber material, consisting of CdS and zein has been fabricated through the electrospinning process. A detailed optimization was carried out to fabricate continuous and uniform nanofibers without beads or droplets. The synthesized hybrid nanofibers were characterized by various state-of-the-art techniques such as scanning electron microscopy, transmission electron microscopy (TEM), TEM-energy dispersive spectrometry, atomic force microscopy and confocal fluorescence micrography. The optimization process was carried out to fabricate fibers ranging from 200 to 450 nm in diameter. The electrical conductivity of the zein–CdS hybrid nanofiber substrates was tested. The potential use of the electrospun CdS-encapsulated nanofibrous scaffold as substrates for cell/tissue culture was evaluated with two different cell types, i.e. mesenchymal stem cells and fibroblasts. The results showed that the electrospun fibrous scaffolds could support the attachment and the proliferation of cells. In addition, the cells cultured on the fibrous scaffolds exhibited normal cell shapes and integrated well with surrounding fibers. The obtained results confirmed the potential for the use of the electrospun QD-encapsulated fluorescent nanofiber mats as scaffolds for tissue engineering.

41 citations

Journal ArticleDOI
TL;DR: MR and MR/PVA nanofibers were found to be an excellent biomaterial for the migration, proliferation and differentiation of mammalian cells, which was confirmed by cell adhesion studies and confocal microcopy.

32 citations

Journal ArticleDOI
TL;DR: Observations suggest that the novel Zein-SWCNTs composite scaffolds may possibly hold great promises as useful antithrombotic material and promising biomaterials for tissue engineering application.
Abstract: Design of blood compatible surfaces is required to minimize platelet surface interactions and increase the thromboresistance of foreign surfaces when they are used as biomaterials especially for artificial blood prostheses. In this study, single wall carbon nanotubes (SWCNTs) and Zein fibrous nanocomposite scaffolds were fabricated by electrospinning and evaluated its antithrombogenicity and hydrophilicity. The uniform and highly smooth nanofibers of Zein composited with different SWCNTs content (ranging from 0.2 wt% to 1 wt%) were successfully prepared by electrospinning method without the occurrence of bead defects. The resulting fiber diameters were in the range of 100–300 nm without any beads. Composite nanofibers with and without SWCNT were characterized through a variety of methods including scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and tensile mechanical testing. The water uptake and retention ability of composite scaffolds decreased whereas thermal stability increased with an addition of SWCNTs. Hemolytic property and platelet adhesion ability of the nanocomposite (Zein-SWCNTs) were explored. These observations suggest that the novel Zein-SWCNTs composite scaffolds may possibly hold great promises as useful antithrombotic material and promising biomaterials for tissue engineering application.

31 citations

Journal ArticleDOI
TL;DR: In this article, the effects of instrument parameters, including applied voltage, tip-target distance, solution flow rate, and solution parameters, such as polymer concentration and solution viscosity on the morphology of electrospun Silk fibroin (SF) nanofibers were evaluated.
Abstract: Electrospinning has been recognized as an efficient technique for the forming of polymer nanofibers. Silk fibroin (SF) nanofibers were electrospun from SF solution using trifluoroacetic acid solution as a solvent. In the present work, we have systematically evaluated the effects of instrument parameters, including applied voltage, tip-target distance, solution flow rate, solution parameters; such as polymer concentration and solution viscosity on the morphology of electrospun SF fibers. The applied voltage and flow rate was monitored at fixed tip target distance during the electrospinning process and it was correlated with the characteristics of the fibers obtained. The number of deposited fibers also increases with the applied voltage. Also, viscosity, flow rate and applied voltage strongly affect the shape and morphology of the fibers. A particular interest, we demonstrated that by monitoring the applied voltage and flow rate it is possible to control the fibers morphology and bead concentration. Rheological study showed a strong dependence of spinnability and fiber morphology on solution viscosity. Solution concentrations has been found to most strongly affect fiber size, with fiber diameter increasing with increasing solution concentration and the morphology of the deposition on the collector changed from spherical beads to interconnected fibrous networks. FTIR analysis clearly shows that there are no spectral differences between fibers and which suggests that there was no chemical modification developed during the process. Under optimized conditions, homogenous (not interconnected) SF fibers with a mean diameter of 234 nm were prepared.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.
Abstract: Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

1,116 citations

Journal ArticleDOI
TL;DR: It is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval.

857 citations

Journal ArticleDOI
TL;DR: Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects and may open new insights in the near future.
Abstract: This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.

816 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on relevant technological approaches developed by research, which show perspectives for scaling-up and for fulfilling requirements of industrial production in terms of throughput, accuracy, and functionality of the realized nanofibers.
Abstract: Electrospun nanofibers are extensively studied and their potential applications are largely demonstrated. Today, electrospinning equipment and technological solutions, and electrospun materials are rapidly moving to commercialization. Dedicated companies supply laboratory and industrial-scale components and apparatus for electrospinning, and others commercialize electrospun products. This paper focuses on relevant technological approaches developed by research, which show perspectives for scaling-up and for fulfilling requirements of industrial production in terms of throughput, accuracy, and functionality of the realized nanofibers. A critical analysis is provided about technological weakness and strength points in combination with expected challenges from the market.

771 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the current state of knowledge of these crustacean shellfish shellfish wastes and the various ways to use chitin, a polysaccharide that may be extracted after deproteinisation and demineralization of the exoskeletons.
Abstract: Background Food processing produces large quantities of by-products. Disposal of waste can lead to environmental and human health problems, yet often they can be turned into high value, useful products. For example, crustacean shell wastes from shrimp, crab, lobster, and krill contain large amounts of chitin, a polysaccharide that may be extracted after deproteinisation and demineralization of the exoskeletons. Scope and approach This review summarizes the current state of knowledge of these crustacean shellfish wastes and the various ways to use chitin. This biopolymer and its derivatives, such as chitosan, have many biological activities (e.g., anti-cancer, antioxidant, and immune-enhancing) and can be used in various applications (e.g., medical, cosmetic, food, and textile). Key findings and conclusions Due to the huge waste produced each year by the shellfish processing industry and the absence of waste management which represent an environmental hazard, the extraction of chitin from crustaceans’ shells may be a solution to minimize the waste and to produce valuable compound which possess biological properties with application in many fields. As a food waste, it is important to also be aware of the non-food uses of these wastes.

751 citations