scispace - formally typeset
Search or ask a question
Author

Bram Vanderborght

Bio: Bram Vanderborght is an academic researcher from Vrije Universiteit Brussel. The author has contributed to research in topics: Actuator & Robot. The author has an hindex of 50, co-authored 392 publications receiving 9709 citations. Previous affiliations of Bram Vanderborght include VU University Amsterdam & Muroran Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A classification based on the principles through which the variable stiffness and damping are achieved is proposed and allows for designers of new devices to orientate and take inspiration and users of VIA's to be guided in the design and implementation process for their targeted application.

876 citations

Journal ArticleDOI
TL;DR: The state of the art in the design of actuators with adaptable passive compliance is described, which is not preferred for classical position-controlled applications such as pick and place operations but is preferred in novel robots where safe human- robot interaction is required or in applications where energy efficiency must be increased by adapting the actuator's resonance frequency.
Abstract: In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking k robots, variable stiffness actuators (VSAs) or adjustable compliant actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user, and their ability to store and release energy in passive elastic elements. This review article describes the state of the art in the design of actuators with adaptable passive compliance. This new type of actuator is not preferred for classical position-controlled applications such as pick and place operations but is preferred in novel robots where safe human- robot interaction is required or in applications where energy efficiency must be increased by adapting the actuator's resonance frequency. The working principles of the different existing designs are explained and compared. The designs are divided into four groups: equilibrium-controlled stiffness, antagonistic-controlled stiffness, structure-controlled stiffness (SCS), and mechanically controlled stiffness.

772 citations

Journal ArticleDOI
TL;DR: A rotational actuator with a novel adaptable compliance (inverse of stiffness) is presented andDepending on the design parameters, it is shown that the torque is a quasi linear function with respect to the angle between the equilibrium position and the actual position.

360 citations

Journal ArticleDOI
16 Aug 2017
TL;DR: This research proposes to construct soft robotics entirely out of self-healing elastomers, on the basis of healing capacities found in nature, and shows how realistic macroscopic damage could be healed entirely using a mild heat treatment.
Abstract: Inspired by the compliance found in many organisms, soft robots are made almost entirely out of flexible, soft material, making them suitable for applications in uncertain, dynamic task environments, including safe human-robot interactions. Their intrinsic compliance absorbs shocks and protects them against mechanical impacts. However, the soft materials used for their construction are highly susceptible to damage, such as cuts and perforations caused by sharp objects present in the uncontrolled and unpredictable environments they operate in. In this research, we propose to construct soft robotics entirely out of self-healing elastomers. On the basis of healing capacities found in nature, these polymers are given the ability to heal microscopic and macroscopic damage. Diels-Alder polymers, being thermoreversible covalent networks, were used to develop three applications of self-healing soft pneumatic actuators (a soft gripper, a soft hand, and artificial muscles). Soft pneumatic actuators commonly experience perforations and leaks due to excessive pressures or wear during operation. All three prototypes were designed using finite element modeling and mechanically characterized. The manufacturing method of the actuators exploits the self-healing behavior of the materials, which can be recycled. Realistic macroscopic damage could be healed entirely using a mild heat treatment. At the location of the scar, no weak spots were created, and the full performance of the actuators was nearly completely recovered after healing.

356 citations

Journal ArticleDOI
TL;DR: In this article, a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs is presented.
Abstract: Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build passively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gives a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs. The influence on the performance of different principles to generate the passive compliance and the variation of the stiffness are investigated. Furthermore, the design contradictions during the engineering process are explained in order to find the best suiting solution for the given purpose. With this in mind, the topics of output power, potential energy capacity, stiffness range, efficiency, and accuracy are discussed. Finally, the dependencies of control, models, sensor setup, and sensor quality are addressed.

296 citations


Cited by
More filters
01 Mar 1999

3,234 citations

01 Jan 2016
TL;DR: Biomechanics and motor control of human movement is downloaded so that people can enjoy a good book with a cup of tea in the afternoon instead of juggling with some malicious virus inside their laptop.
Abstract: Thank you very much for downloading biomechanics and motor control of human movement. Maybe you have knowledge that, people have search hundreds times for their favorite books like this biomechanics and motor control of human movement, but end up in infectious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggled with some malicious virus inside their laptop.

1,689 citations

Proceedings ArticleDOI
01 Dec 2006
TL;DR: The well-known linear inverted pendulum model is extended to include a flywheel body and it is shown how to compute exact solutions of the capture region for this model, the region on the ground where a humanoid must step to in order to come to a complete stop.
Abstract: It is known that for a large magnitude push a human or a humanoid robot must take a step to avoid a fall. Despite some scattered results, a principled approach towards "when and where to take a step" has not yet emerged. Towards this goal, we present methods for computing capture points and the capture region, the region on the ground where a humanoid must step to in order to come to a complete stop. The intersection between the capture region and the base of support determines which strategy the robot should adopt to successfully stop in a given situation. Computing the capture region for a humanoid, in general, is very difficult. However, with simple models of walking, computation of the capture region is simplified. We extend the well-known linear inverted pendulum model to include a flywheel body and show how to compute exact solutions of the capture region for this model. Adding rotational inertia enables the humanoid to control its centroidal angular momentum, much like the way human beings do, significantly enlarging the capture region. We present simulations of a simple planar biped that can recover balance after a push by stepping to the capture region and using internal angular momentum. Ongoing work involves applying the solution from the simple model as an approximate solution to more complex simulations of bipedal walking, including a 3D biped with distributed mass.

1,049 citations