scispace - formally typeset
Search or ask a question
Author

Brana Pantelic

Bio: Brana Pantelic is an academic researcher from University of Belgrade. The author has contributed to research in topics: Biodegradation & Chemistry. The author has an hindex of 1, co-authored 2 publications receiving 8 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability.
Abstract: Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.

41 citations

Journal ArticleDOI
27 Oct 2021-Polymers
TL;DR: In this article, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market value biopigments and polyhydroxybutyrate (PHB) polyesters.
Abstract: Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (eu), 325 ± 73%; and Young's modulus (E), 53-250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 °C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.

5 citations

Journal ArticleDOI
TL;DR: In this article , the secretome of a Fusarium species reduced the sample mass and the average molecular weight of the polyethylene (LDPE) by 24.5 and 20.4% respectively.

1 citations

Journal ArticleDOI
TL;DR: In this article , a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation.
Abstract: Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg ml−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg ml−1 and 45 µg ml−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems and provided a background assessment on the adverse effects of plastic pollution on terrestrial and aquatic ecosystems; interlink the management of plastics with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations.
Abstract: Plastic pollution is ubiquitous in terrestrial and aquatic ecosystems. Plastic waste exposed to the environment creates problems and is of significant concern for all life forms. Plastic production and accumulation in the natural environment are occurring at an unprecedented rate due to indiscriminate use, inadequate recycling, and deposits in landfills. In 2019, the global production of plastic was at 370 million tons, with only 9% of it being recycled, 12% being incinerated, and the remaining left in the environment or landfills. The leakage of plastic wastes into terrestrial and aquatic ecosystems is occurring at an unprecedented rate. The management of plastic waste is a challenging problem for researchers, policymakers, citizens, and other stakeholders. Therefore, here, we summarize the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems. The overall goal of this review is to provide background assessment on the adverse effects of plastic pollution on natural ecosystems; interlink the management of plastic pollution with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations. Plastic waste management through community involvement and socio-economic inputs in different countries are presented and discussed. Plastic ban policies and public awareness are likely the major mitigation interventions. The need for life cycle assessment and circularity to assess the potential environmental impacts and resources used throughout a plastic product’s life span is emphasized. Innovations are needed to reduce, reuse, recycle, and recover plastics and find eco-friendly replacements for plastics. Empowering and educating communities and citizens to act collectively to minimize plastic pollution and use alternative options for plastics must be promoted and enforced. Plastic pollution is a global concern that must be addressed collectively with the utmost priority.

152 citations

Journal ArticleDOI
TL;DR: In this paper , a review of biopolymer-based food packaging materials and their composites, their biodegradation mechanisms, and the effect of nano-additives on the food packaging properties are presented.

73 citations

Journal ArticleDOI
TL;DR: A panorama of the most promising studies related to the recycling of polyethylene (PE), polypropylene (PP), polyethylenes terephthalate (PET), and polystyrene (PS) is given within this review as mentioned in this paper.
Abstract: Today, the scientific community is facing crucial challenges in delivering a healthier world for future generations. Among these, the quest for circular and sustainable approaches for plastic recycling is one of the most demanding for several reasons. Indeed, the massive use of plastic materials over the last century has generated large amounts of long-lasting waste, which, for much time, has not been object of adequate recovery and disposal politics. Most of this waste is generated by packaging materials. Nevertheless, in the last decade, a new trend imposed by environmental concerns brought this topic under the magnifying glass, as testified by the increasing number of related publications. Several methods have been proposed for the recycling of polymeric plastic materials based on chemical or mechanical methods. A panorama of the most promising studies related to the recycling of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS) is given within this review.

32 citations

Journal ArticleDOI
Pan Liu1, Tong Zhang1, Yi Zheng1, Qingbin Li1, Tianyuan Su1, Qingsheng Qi1 
01 Jul 2021
TL;DR: A co-cultivation system, in which PET degradation was coupled with polyhydroxybutyrate (PHB) production, provides a new strategy for the biodegradation and upcycling of PET waste by artificial microflora.
Abstract: The management and recycling of plastic waste is a challenging global issue. Polyethylene terephthalate (PET), one of the most widely used synthetic plastics, can be hydrolyzed by a series of enzymes. However, upcycling the resulting monomers is also a problem. In this study, we designed a co-cultivation system, in which PET degradation was coupled with polyhydroxybutyrate (PHB) production. First, PETase from Ideonalla sakaiensis was expressed in Yarrowia lipolytica Po1f with a signal peptide from lipase. The engineered PETase-producing Y. lipolytica was confirmed to hydrolyze bis(2-hydroxyethyl) terephthalate (BHET) and PET powder into the monomers terephthalate (TPA) and ethylene glycol (EG). Simultaneously, a TPA-degrading Pseudomonas stutzeri strain isolated from PET waste was transformed with a recombinant plasmid containing the phbCAB operon from Ralstonia eutropha, which encodes enzymes for the biosynthesis of PHB. The two co-cultivated engineered microbes could directly hydrolyze BHET to produce the bioplastic PHB in one fermentation step. During this process, 5.16 g/L BHET was hydrolyzed in 12 h, and 3.66 wt% PHB (3.54 g/L cell dry weight) accumulated in 54 h. A total of 0.31g/L TPA was produced from the hydrolyzation of PET in 228 h. Although PHB could not be synthesized directly from PET because of the low hydrolyzing efficiency of PETase, this study provides a new strategy for the biodegradation and upcycling of PET waste by artificial microflora.

23 citations

Journal ArticleDOI
TL;DR: In this article , the authors reviewed the water resistant modification methods of polyvinyl alcohol and the application of water resistant films and provided an outlook on the development trend of PVA water-resistant films.
Abstract: Polyvinyl alcohol (PVA) is one of the few biodegradable synthetic resins from petroleum-based sources that can alleviate white pollution in the environment. PVA film materials have excellent properties, such as high barrier, high transparency, high toughness, biocompatibility, and adjustable water solubility. However, due to the presence of hydrophilic hydroxyl groups in the side chain of PVA resin, when PVA film is placed in a humid or water environment, swelling or even dissolution will occur, which greatly limits its application. Therefore, it is necessary to modify PVA resin to improve water resistance without reducing other properties and can also impart various functionalities to it, thereby widening the application range. This paper reviews the water-resistant modification methods of polyvinyl alcohol and the application of water-resistant films and provides an outlook on the development trend of PVA water-resistant films.

17 citations