scispace - formally typeset
Search or ask a question
Author

Branka Salopek-Sondi

Bio: Branka Salopek-Sondi is an academic researcher from Clarkson University. The author has contributed to research in topics: Auxin & Brassica oleracea. The author has an hindex of 22, co-authored 55 publications receiving 5920 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations

Journal ArticleDOI
08 Jan 2021
TL;DR: In this article, the authors focused on phenolic acids, flavonoids, stilbenoids, and lignans and focused their review on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses.
Abstract: Abiotic stressors such as extreme temperatures, drought, flood, light, salt, and heavy metals alter biological diversity and crop production worldwide. Therefore, it is important to know the mechanisms by which plants cope with stress conditions. Polyphenols, which are the largest group of plant-specialized metabolites, are generally recognized as molecules involved in stress protection in plants. This diverse group of metabolites contains various structures, from simple forms consisting of one aromatic ring to more complex ones consisting of large number of polymerized molecules. Consequently, all these molecules, depending on their structure, may show different roles in plant growth, development, and stress protection. In the present review, we aimed to summarize data on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses. We focused our review on phenolic acids, flavonoids, stilbenoids, and lignans.

200 citations

Journal ArticleDOI
TL;DR: An overview of kale's botanical characteristics, agronomic requirements, contemporary and traditional use, macronutrient and phytochemical content and biological activity, in order to point out the reasons for tremendous kale popularity.
Abstract: Kale (Brassica oleracea var. acephala) is a cruciferous vegetable, characterized by leaves along the stem, which, in recent years, have gained a great popularity as a ´superfood´. Consequently, in a popular culture it is listed in many ´lists of the healthiest vegetables´. Without the doubt, a scientific evidences support the fact that cruciferous vegetables included in human diet can positively affect health and well-being, but remains unclear why kale is declared superior in comparison with other cruciferous. It is questionable if this statement about kale is triggered by scientific evidence or by some other factors. Our review aims to bring an overview of kale's botanical characteristics, agronomic requirements, contemporary and traditional use, macronutrient and phytochemical content and biological activity, in order to point out the reasons for tremendous kale popularity.

134 citations

Journal ArticleDOI
TL;DR: The worldwide established strawberry cultivar 'Albion' and three recently introduced cultivars in Europe: 'Monterey', 'Capri', and 'Murano', grown hydroponically, were studied to ascertain the influence of cultivar and harvesting date on the physical, chemical, antioxidant and phytochemical properties of their fruits.

97 citations

Journal ArticleDOI
15 Dec 2009-Talanta
TL;DR: To the authors' knowledge, the identification of IAA conjugates with Gly, Phe and Val from higher plants is reported here for the first time.

90 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Abstract: Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1-100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.

5,609 citations

Journal ArticleDOI
TL;DR: Silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc, due to its capability of modulating metals into their nanosize.

5,014 citations

Journal ArticleDOI
TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

4,319 citations

Journal ArticleDOI
TL;DR: This is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and the results demonstrate thatsilver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
Abstract: In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag+ (in the form of AgNO3). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.

3,697 citations

Journal ArticleDOI
TL;DR: This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity.

3,290 citations