scispace - formally typeset
Search or ask a question
Author

Brendan Humphries

Bio: Brendan Humphries is an academic researcher from Central Queensland University. The author has contributed to research in topics: Isometric exercise & Bench press. The author has an hindex of 23, co-authored 41 publications receiving 3327 citations. Previous affiliations of Brendan Humphries include Southern Cross University & Charles Darwin University.

Papers
More filters
Journal ArticleDOI
TL;DR: The experimental group which trained with the load that maximized mechanical power achieved the best overall results in enhancing dynamic athletic performance recording statistically significant (P < 0.05) improvements on most test items and producing statistically superior results to the two other training modalities on the jumping and isokinetic tests.
Abstract: This study was performed to determine which of three theoretically optimal resistance training modalities resulted in the greatest enhancement in the performance of a series of dynamic athletic activities. The three training modalities included 1) traditional weight training, 2) plyometric training, and 3) explosive weight training at the load that maximized mechanical power output. Sixty-four previously trained subjects were randomly allocated to four groups that included the above three training modalities and a control group. The experimental groups trained for 10 wk performing either heavy squat lifts, depth jumps, or weighted squat jumps. All subjects were tested prior to training, after 5 wk of training and at the completion of the training period. The test items included 1) 30-m sprint, 2) vertical jumps performed with and without a countermovement, 3) maximal cycle test, 4) isokinetic leg extension test, and 5) a maximal isometric test. The experimental group which trained with the load that maximized mechanical power achieved the best overall results in enhancing dynamic athletic performance recording statistically significant (P < 0.05) improvements on most test items and producing statistically superior results to the two other training modalities on the jumping and isokinetic tests.

772 citations

Journal ArticleDOI
TL;DR: Both neural adaptations and the capacity of the skeletal muscle to undergo training-induced hypertrophy even in older people explain the gains observed in maximal force in older men, while rapid force production capacity recorded during the isometric knee extension action remained unaltered during the present mixed strength training program.
Abstract: Effects of a 10-week progressive strength training program composed of a mixture of exercises for increasing muscle mass, maximal peak force, and explosive strength (rapid force production) were examined in 8 young (YM) (29+/-5 yrs) and 10 old (OM) (61+/-4 yrs) men. Electromyographic activity, maximal bilateral isometric peak force, and maximal rate of force development (RFD) of the knee extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF), muscle fiber proportion, and fiber areas of types I, IIa, IIb, and IIab of the vastus lateralis were evaluated. Maximal and explosive strength values remained unaltered in both groups during a 3-week control period with no training preceding the strength training. After the 10-week training period, maximal isometric peak force increased from 1311+/-123 N by 15.6% (p <.05) in YM and from 976+/-168 N by 16.5% (p <.01) in OM. The pretraining RFD values of 4049+/-791 N*s(-1) in YM and 2526+/-1197 N*s(-1) in OM remained unaltered. Both groups showed significant increases (p < .05) in the averaged maximum IEMGs of the vastus muscles. The CSA of the QF increased from 90.3+/-7.9 cm2 in YM by 12.2% (p <.05) and from 74.7+/-7.8 cm2 in OM by 8.5% (p <.001). No changes occurred in the muscle fiber distribution of type I during the training, whereas the proportion of subtype IIab increased from 2% to 6% (p < .05) in YM and that of type IIb decreased in both YM from 25% to 16% (p < .01) and in OM from 15% to 6% (p < .05). The mean fiber area of type I increased after the 10-week training in YM (p < .001) and OM (p < .05) as well as that of type IIa in both YM (p < .01) and OM (p < .01). The individual percentage values for type I fibers were inversely correlated with the individual changes recorded during the training in the muscle CSA of the QF (r=-.56, p < .05). The present results suggest that both neural adaptations and the capacity of the skeletal muscle to undergo training-induced hypertrophy even in older people explain the gains observed in maximal force in older men, while rapid force production capacity recorded during the isometric knee extension action remained unaltered during the present mixed strength training program.

431 citations

Journal ArticleDOI
TL;DR: It was concluded that performing traditional press movements rapidly with light loads does not create ideal loading conditions for the neuromuscular system with regard to explosive strength production, especially in the final stages of the movement.
Abstract: The aim of this study was to investigate the kinematics, kinetics, and neural activation of the traditional bench press movement performed explosively and the explosive bench throw in which the barbell was projected from the hands. Seventeen male subjects completed three trials with a bar weight of 45% of the subject's previously determined 1RM. Performance was significantly higher during the throw movement compared to the press for average velocity, peak velocity, average force, average power, and peak power. Average muscle activity during the concentric phase for pectoralis major, anterior deltoid, triceps brachii, and biceps brachii was higher for the throw condition. It was concluded that performing traditional press movements rapidly with light loads does not create ideal loading conditions for the neuromuscular system with regard to explosive strength production, especially in the final stages of the movement, because ballistic weight loading conditions where the resistance was accelerated throughou...

373 citations

Journal ArticleDOI
TL;DR: Investigation of the influence of load and the stretch shortening cycle (SSC) on the kinematics, kinetics, and muscle activation that occurs during maximal effort throws found explosive movements involving longer concentric actions than experienced during brief SSC movements may be limited by the ability of the muscle to produce force during fast contraction velocities.
Abstract: Although explosive power in lower-body movements has been extensively studied, there is a paucity of research examining such movements in the upper body. This study aimed to investigate the influence of load and the stretch shortening cycle (SSC) on the kinematics, kinetics, and muscle activation that occurs during maximal effort throws. A total of 17 male subjects performed SSC and concentric only (CO) bench throws using loads of 15%, 30%, 45%, 60%, 75%, 90% and 100% of their previously determined one repetition maximum bench press. The displacement, velocity, acceleration, force and power output as well as the electromyogram (EMG) from pectoralis major, anterior deltoid, and triceps brachii were recorded for each throw. The results were compared using multivariate analysis of variance with repeated measures. A criterion alpha level of P < or = 0.05 was used. Similar force velocity power relationships were determined for this multijoint upper-body movement as has been found for isolated muscles, single joint movements, and vertical jumping. The highest power output was produced at the 30% [563 (104) W] and 45% [560 (86) W] loads during the SSC throws. Force output increased as a function of load; however, even the lighter loads resulted in considerable force due to the high accelerations produced. Average velocity, average and peak force, and average and peak power output were significantly higher for the SSC throws compared to the CO throws. However, peak velocity and height thrown were not potentiated by performing the pre-stretch because the duration and range of movement allowed the ability of the muscle to generate force at high shortening velocities to dominate the resulting throw. As such, explosive movements involving longer concentric actions than experienced during brief SSC movements may be limited by the ability of the muscle to produce force during fast contraction velocities.

343 citations

Journal ArticleDOI
TL;DR: It appears Swiss ball training may positively affect core stability without concomitant improvements in physical performance in young athletes and specificity of exercise selection should be considered.
Abstract: Stanton, R., P. Reaburn, and B. Humphries. The ef- fect of short-term Swiss ball training on core stability and run- ning economy. J. Strength Cond. Res. 18(3):522-528. 2004.—The purpose of this study was to investigate the effect of a short- term Swiss ball training on core stability and running economy. Eighteen young male athletes (15.5 6 1.4 years; 62.5 6 4.7 kg; S9 skinfolds 78.9 6 28.2 mm; VO2max 55.3 6 5.7 ml·kg 21 ·min 21 ) were divided into a control (n 5 10) and experimental (n 5 8) groups. Athletes were assessed before and after the training pro- gram for stature, body mass, core stability, electromyographic activity of the abdominal and back muscles, treadmill VO2max, running economy, and running posture. The experimental group performed 2 Swiss ball training sessions per week for 6 weeks. Data analysis revealed a significant effect of Swiss ball training on core stability in the experimental group (p , 0.05). No sig- nificant differences were observed for myoelectric activity of the abdominal and back muscles, treadmill VO2max, running econo- my, or running posture in either group. It appears Swiss ball training may positively affect core stability without concomitant improvements in physical performance in young athletes. Spec- ificity of exercise selection should be considered.

290 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans.
Abstract: The purpose of this Position Stand is to provide an overview of issues critical to understanding the importance of exercise and physical activity in older adult populations. The Position Stand is divided into three sections: Section 1 briefly reviews the structural and functional changes that characterize normal human aging, Section 2 considers the extent to which exercise and physical activity can influence the aging process, and Section 3 summarizes the benefits of both long-term exercise and physical activity and shorter-duration exercise programs on health and functional capacity. Although no amount of physical activity can stop the biological aging process, there is evidence that regular exercise can minimize the physiological effects of an otherwise sedentary lifestyle and increase active life expectancy by limiting the development and progression of chronic disease and disabling conditions. There is also emerging evidence for significant psychological and cognitive benefits accruing from regular exercise participation by older adults. Ideally, exercise prescription for older adults should include aerobic exercise, muscle strengthening exercises, and flexibility exercises. The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans. All older adults should engage in regular physical activity and avoid an inactive lifestyle.

4,264 citations

Journal Article
TL;DR: In this article, the optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single and multiple-joint exercises.
Abstract: In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises) For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM) For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC) When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number The recommendation for training frequency is 2-3 d·wk -1 for novice training, 3-4 d·wk -1 for intermediate training, and 4-5 d·wk -1 for advanced training Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity Higher volume, multiple-set programs are recommended for maximizing hypertrophy Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets) It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (<90 s) In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status

3,421 citations

Journal ArticleDOI
TL;DR: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary and emphasis should be placed on multiple-joint exercises, especially those involving the total body.
Abstract: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary. The optimal characteristics of strength-specific programs include the use of both concentric and eccentric muscle actions and the performance of both single- and multiple-joint exercises. It is also recommended that the strength program sequence exercises to optimize the quality of the exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher intensity before lower intensity exercises). For initial resistances, it is recommended that loads corresponding to 8-12 repetition maximum (RM) be used in novice training. For intermediate to advanced training, it is recommended that individuals use a wider loading range, from 1-12 RM in a periodized fashion, with eventual emphasis on heavy loading (1-6 RM) using at least 3-min rest periods between sets performed at a moderate contraction velocity (1-2 s concentric, 1-2 s eccentric). When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number. The recommendation for training frequency is 2-3 d x wk(-1) for novice and intermediate training and 4-5 d x wk(-1) for advanced training. Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency. For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion, with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity. Higher volume, multiple-set programs are recommended for maximizing hypertrophy. Progression in power training entails two general loading strategies: 1) strength training, and 2) use of light loads (30-60% of 1 RM) performed at a fast contraction velocity with 2-3 min of rest between sets for multiple sets per exercise. It is also recommended that emphasis be placed on multiple-joint exercises, especially those involving the total body. For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (> 15) using short rest periods (< 90 s). In the interpretation of this position stand, as with prior ones, the recommendations should be viewed in context of the individual's target goals, physical capacity, and training status.

2,845 citations