scispace - formally typeset
Search or ask a question
Author

Brian A. Fox

Bio: Brian A. Fox is an academic researcher from ZymoGenetics. The author has contributed to research in topics: Polynucleotide & Peptide sequence. The author has an hindex of 20, co-authored 72 publications receiving 9022 citations. Previous affiliations of Brian A. Fox include University of Washington & Novo Nordisk.


Papers
More filters
Journal ArticleDOI
04 Aug 2000-Science
TL;DR: This article determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution and found that the highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the sevenhelix transmembrane motif.
Abstract: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.

5,357 citations

Journal ArticleDOI
TL;DR: A family of three cytokines, designated interleukin 28A, IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family are identified and may serve as an alternative totype I IFNs in providing immunity to viral infection.
Abstract: Cytokines play a critical role in modulating the innate and adaptive immune systems. Here, we have identified from the human genomic sequence a family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family. We found that like type I IFNs, IL-28 and IL-29 were induced by viral infection and showed antiviral activity. However, IL-28 and IL-29 interacted with a heterodimeric class II cytokine receptor that consisted of IL-10 receptor beta (IL-10Rbeta) and an orphan class II receptor chain, designated IL-28Ralpha. This newly described cytokine family may serve as an alternative to type I IFNs in providing immunity to viral infection.

1,564 citations

Journal ArticleDOI
TL;DR: The identification of a tumor cell surface molecule that binds NKp30, a human receptor which triggers antitumor NK cell cytotoxicity and cytokine secretion is reported and this previously unannotated gene belongs to the B7 family and was designated B7-H6, emphasizing that the expression of stress-induced self-molecules associated with cell transformation serves as a mode of cell recognition in innate immunity.
Abstract: Cancer development is often associated with the lack of specific and efficient recognition of tumor cells by the immune system. Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumors. We report the identification of a tumor cell surface molecule that binds NKp30, a human receptor which triggers antitumor NK cell cytotoxicity and cytokine secretion. This previously unannotated gene belongs to the B7 family and, hence, was designated B7-H6. B7-H6 triggers NKp30-mediated activation of human NK cells. B7-H6 was not detected in normal human tissues but was expressed on human tumor cells, emphasizing that the expression of stress-induced self-molecules associated with cell transformation serves as a mode of cell recognition in innate immunity.

627 citations

Journal ArticleDOI
01 Jan 1999-Proteins
TL;DR: A scoring function based on the decomposition P(st structure|sequence) ∝ P(sequence|structure) *P(structure), which outperforms previous scoring functions in correctly identifying native‐like protein structures in large ensembles of compact decoys is described.
Abstract: We describe the development of a scoring function based on the decomposition P(structure0 sequence) ~ P(sequence0 structure) *P(structure), which outperforms previous scoring functions in correctly identifying native-like pro- tein structures in large ensembles of compact de- coys. The first term captures sequence-dependent features of protein structures, such as the burial of hydrophobic residues in the core, the second term, universal sequence-independent features, such as the assembly of b-strands into b-sheets. The effica- cies of a wide variety of sequence-dependent and sequence-independent features of protein struc- tures for recognizing native-like structures were systematically evaluated using ensembles ofD30,000 compact conformations with fixed secondary struc- ture for each of 17 small protein domains. The best results were obtained using a core scoring function with P(sequence0 structure) parameterized simi- larly to our previous work (Simons et al., J Mol Biol 1997;268:209-225) and P(structure) focused on sec- ondary structure packing preferences; while sev- eral additional features had some discriminatory power on their own, they did not provide any addi- tional discriminatory power when combined with the core scoring function. Our results, on both the training set and the independent decoy set of Park and Levitt (J Mol Biol 1996;258:367-392), suggest that this scoring function should contribute to the prediction of tertiary structure from knowledge of sequence and secondary structure. Proteins

469 citations

Journal ArticleDOI
TL;DR: It is shown that soluble Vstm3 attenuates T‐cell responses in vitro and in vivo and animals deficient in VSTM3 are more sensitive to autoimmune challenges indicating that this new member of the CD28 family is an important regulator of T‐ cell responses.
Abstract: Members of the CD28 family play important roles in regulating T cell functions and share a common gene structure profile. We have identified VSTM3 as a protein whose gene structure matches that of the other CD28 family members. This protein (also known as TIGIT and WUCAM) has been previously shown to affect immune responses and is expressed on NK cells, activated and memory T cells, and regulatory T cells. The nectin-family proteins CD155 and CD112 serve as counter-structures for VSTM3 and CD155 and CD112 also bind to the activating receptor CD226 on T cells and NK cells. Hence, this group of interacting proteins forms a network of molecules similar to the well-characterized CD28-CTLA4-CD80-CD86 network. In the same way that soluble CTLA4 can be used to block T cell responses, we show that soluble Vstm3 attenuates T cell responses in vitro and in vivo. Moreover, animals deficient in Vstm3 are more sensitive to autoimmune challenges indicating that this new member of the CD28 family is an important regulator of T cell responses.

275 citations


Cited by
More filters
Journal ArticleDOI
04 Aug 2000-Science
TL;DR: This article determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution and found that the highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the sevenhelix transmembrane motif.
Abstract: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.

5,357 citations

Journal ArticleDOI
TL;DR: It is shown that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM, providing an “alternative self” mechanism for MHC class I inhibition.
Abstract: NK cell cytotoxicity is controlled by numerous NK inhibitory and activating receptors. Most of the inhibitory receptors bind MHC class I proteins and are expressed in a variegated fashion. It was recently shown that TIGIT, a new protein expressed by T and NK cells binds to PVR and PVR-like receptors and inhibits T cell activity indirectly through the manipulation of DC activity. Here, we show that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM. Finally, we show that TIGIT counter inhibits the NK-mediated killing of tumor cells and protects normal cells from NK-mediated cytoxicity thus providing an “alternative self” mechanism for MHC class I inhibition.

3,538 citations

Journal ArticleDOI
17 Sep 2009-Nature
TL;DR: It is reported that a genetic polymorphism near the IL28B gene, encoding interferon-λ-3 (IFN-α-2a) is associated with an approximately twofold change in response to treatment, both among patients of European ancestry and African-Americans.
Abstract: Chronic infection with hepatitis C virus (HCV) affects 170 million people worldwide and is the leading cause of cirrhosis in North America. Although the recommended treatment for chronic infection involves a 48-week course of peginterferon-alpha-2b (PegIFN-alpha-2b) or -alpha-2a (PegIFN-alpha-2a) combined with ribavirin (RBV), it is well known that many patients will not be cured by treatment, and that patients of European ancestry have a significantly higher probability of being cured than patients of African ancestry. In addition to limited efficacy, treatment is often poorly tolerated because of side effects that prevent some patients from completing therapy. For these reasons, identification of the determinants of response to treatment is a high priority. Here we report that a genetic polymorphism near the IL28B gene, encoding interferon-lambda-3 (IFN-lambda-3), is associated with an approximately twofold change in response to treatment, both among patients of European ancestry (P = 1.06 x 10(-25)) and African-Americans (P = 2.06 x 10(-3)). Because the genotype leading to better response is in substantially greater frequency in European than African populations, this genetic polymorphism also explains approximately half of the difference in response rates between African-Americans and patients of European ancestry.

3,529 citations

Journal ArticleDOI
23 Nov 2007-Science
TL;DR: Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopin as a template model for this large receptor family.
Abstract: Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human β2-adrenergic receptor–T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein–coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.

3,065 citations

Journal ArticleDOI
TL;DR: This study represents the first overall map of the GPCR sequences in a single mammalian genome and shows several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor.
Abstract: The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families, named glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin, forming the GRAFS classification system. The rhodopsin family is the largest and forms four main groups with 13 sub-branches. Positions of the GPCRs in chromosomal paralogons regions indicate the importance of tetraploidizations or local gene duplication events for their creation. We also searched for "fingerprint" motifs using Hidden Markov Models delineating the putative inter-relationship of the GRAFS families. We show several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor. This study represents the first overall map of the GPCRs in a single mammalian genome. Our novel approach of analyzing such large and diverse sequence sets may be useful for studies on GPCRs in other genomes and divergent protein families.

2,677 citations