scispace - formally typeset
Search or ask a question
Author

Brian D. Aevermann

Bio: Brian D. Aevermann is an academic researcher from J. Craig Venter Institute. The author has contributed to research in topics: Cell type & Computer science. The author has an hindex of 15, co-authored 33 publications receiving 1871 citations.

Papers
More filters
Journal ArticleDOI
21 Aug 2019-Nature
TL;DR: RNA-sequencing analysis of cells in the human cortex enabled identification of diverse cell types, revealing well-conserved architecture and homologous cell types as well as extensive differences when compared with datasets covering the analogous region of the mouse brain.
Abstract: Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.

1,044 citations

Journal ArticleDOI
TL;DR: In this article, the authors generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters.
Abstract: Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.

417 citations

Journal ArticleDOI
26 Dec 2018-PLOS ONE
TL;DR: It is demonstrated that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis, and the high information content of nuclear RNA for characterization of cellular diversity in brain tissues is illustrated.
Abstract: Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.

368 citations

Journal ArticleDOI
TL;DR: A protocol is described for sequencing the transcriptome of a cell nucleus by isolating nuclei at 4 °C from tissue homogenates, which cause minimal damage and allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs.
Abstract: A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for cDNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome. We isolate nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem human brain tissue stored at -80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs. By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing.

334 citations

Journal ArticleDOI
TL;DR: The recent improvements in IRD are described including the use of cloud and high performance computing resources, analysis and visualization of user-provided sequence data with associated metadata, predictions of novel variant proteins, annotations of phenotype-associated sequence markers and their predicted phenotypic effects, hemagglutinin (HA) clade classifications.
Abstract: The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics and therapeutics against influenza virus by providing a comprehensive collection of influenza-related data integrated from various sources, a growing suite of analysis and visualization tools for data mining and hypothesis generation, personal workbench spaces for data storage and sharing, and active user community support. Here, we describe the recent improvements in IRD including the use of cloud and high performance computing resources, analysis and visualization of user-provided sequence data with associated metadata, predictions of novel variant proteins, annotations of phenotype-associated sequence markers and their predicted phenotypic effects, hemagglutinin (HA) clade classifications, an automated tool for HA subtype numbering conversion, linkouts to disease event data and the addition of host factor and antiviral drug components. All data and tools are freely available without restriction from the IRD website at https://www.fludb.org.

274 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2018-Nature
TL;DR: A compendium of single-cell transcriptomic data from the model organism Mus musculus that comprises more than 100,000 cells from 20 organs and tissues is presented, representing a new resource for cell biology and enabling the direct and controlled comparison of gene expression in cell types that are shared between tissues.
Abstract: Here we present a compendium of single-cell transcriptomic data from the model organism Mus musculus that comprises more than 100,000 cells from 20 organs and tissues. These data represent a new resource for cell biology, reveal gene expression in poorly characterized cell populations and enable the direct and controlled comparison of gene expression in cell types that are shared between tissues, such as T lymphocytes and endothelial cells from different anatomical locations. Two distinct technical approaches were used for most organs: one approach, microfluidic droplet-based 3'-end counting, enabled the survey of thousands of cells at relatively low coverage, whereas the other, full-length transcript analysis based on fluorescence-activated cell sorting, enabled the characterization of cell types with high sensitivity and coverage. The cumulative data provide the foundation for an atlas of transcriptomic cell biology.

1,757 citations

Journal ArticleDOI
TL;DR: The latest literatures on genetic, epidemiological, and clinical features of COVID‐19 in comparison to SARS and MERS are summarized and special measures on diagnosis and potential interventions are emphasized to improve understanding of the unique features ofCOVID‐ 19 and enhance control measures in the future.
Abstract: By 27 February 2020, the outbreak of coronavirus disease 2019 (COVID-19) caused 82 623 confirmed cases and 2858 deaths globally, more than severe acute respiratory syndrome (SARS) (8273 cases, 775 deaths) and Middle East respiratory syndrome (MERS) (1139 cases, 431 deaths) caused in 2003 and 2013, respectively. COVID-19 has spread to 46 countries internationally. Total fatality rate of COVID-19 is estimated at 3.46% by far based on published data from the Chinese Center for Disease Control and Prevention (China CDC). Average incubation period of COVID-19 is around 6.4 days, ranges from 0 to 24 days. The basic reproductive number (R0 ) of COVID-19 ranges from 2 to 3.5 at the early phase regardless of different prediction models, which is higher than SARS and MERS. A study from China CDC showed majority of patients (80.9%) were considered asymptomatic or mild pneumonia but released large amounts of viruses at the early phase of infection, which posed enormous challenges for containing the spread of COVID-19. Nosocomial transmission was another severe problem. A total of 3019 health workers were infected by 12 February 2020, which accounted for 3.83% of total number of infections, and extremely burdened the health system, especially in Wuhan. Limited epidemiological and clinical data suggest that the disease spectrum of COVID-19 may differ from SARS or MERS. We summarize latest literatures on genetic, epidemiological, and clinical features of COVID-19 in comparison to SARS and MERS and emphasize special measures on diagnosis and potential interventions. This review will improve our understanding of the unique features of COVID-19 and enhance our control measures in the future.

1,196 citations

Journal ArticleDOI
21 Aug 2019-Nature
TL;DR: RNA-sequencing analysis of cells in the human cortex enabled identification of diverse cell types, revealing well-conserved architecture and homologous cell types as well as extensive differences when compared with datasets covering the analogous region of the mouse brain.
Abstract: Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.

1,044 citations

01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations