scispace - formally typeset
Search or ask a question
Author

Brian D. O. Anderson

Bio: Brian D. O. Anderson is an academic researcher from Australian National University. The author has contributed to research in topics: Linear system & Adaptive control. The author has an hindex of 96, co-authored 1107 publications receiving 47104 citations. Previous affiliations of Brian D. O. Anderson include University of Newcastle & Eindhoven University of Technology.


Papers
More filters
Journal Article
TL;DR: This book helps to fill the void in the market and does that in a superb manner by covering the standard topics such as Kalman filtering, innovations processes, smoothing, and adaptive and nonlinear estimation.
Abstract: Estimation theory has had a tremendous impact on many problem areas over the past two decades. Beginning with its original use in the aerospace industry, its applications can now be found in many different areas such as control and communjcations, power systems, transportation systems, bioengineering, image processing, etc. Along with linear system theory and optimal control, a course in estimation theorycan be found in the graduate system and control curriculum,of most schools in the country. In fact, it is probably one of the most,salable courses as far as employment is concerned. However, despite its economic value and the amount of activities in the field, very few books on estimation theory have appeared recently. This book helps to fill the void in the market and does that in a superb manner. Although the book is called OptimalFiltering, the coverage is restricted to discrete time filtering. A more appropriate title would thus be Optimal Discrete Time ,Filtering. The authors’ decision to concentrate on discrete time f lters is due to “recent technological developments as well as the easier path offered students and instructors.” This is probably a wise move since a thorough treatment of continuous time filtering will require a better knowledge o f stochastic processes than most graduate students or engineers will have. As it stands now, the text requires little background beyond that of linear system theory and probability theory. Written by active researchers, in the area, the book covers the standard topics such as Kalman filtering, innovations processes, smoothing, and adaptive and nonlinear estimation. Much of the material in the book has been around for a long time and has been widely used, by practitioners in the area: Some results are more recent. However,-it .has been difficult to locate all of them presented in a n organized manner within a single text. This is especially true of the chapters dealing with the computation aspects and nonlinear and adaptive estimation. After a short introductory chapter, Chapter 2 introduces the mathematical model to be used throughout most of the book. The discrete time Kalman filter is 1 hen presented in Chapter 3, along with some applications. Chapter 4 contains a treatment

4,836 citations

Book
01 Jun 1979
TL;DR: In this article, an augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems, with step-by-step explanations that show clearly how to make practical use of the material.
Abstract: This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material. The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the engineering properties of the regulator. Topics include degree of stability, phase and gain margin, tolerance of time delay, effect of nonlinearities, asymptotic properties, and various sensitivity problems. The third section explores state estimation and robust controller design using state-estimate feedback. Numerous examples emphasize the issues related to consistent and accurate system design. Key topics include loop-recovery techniques, frequency shaping, and controller reduction, for both scalar and multivariable systems. Self-contained appendixes cover matrix theory, linear systems, the Pontryagin minimum principle, Lyapunov stability, and the Riccati equation. Newly added to this Dover edition is a complete solutions manual for the problems appearing at the conclusion of each section.

3,254 citations

Journal ArticleDOI
TL;DR: An overview of the measurement techniques in sensor network localization and the one-hop localization algorithms based on these measurements are provided and a detailed investigation on multi-hop connectivity-based and distance-based localization algorithms are presented.

1,870 citations

Journal ArticleDOI
TL;DR: Digital Control Of Dynamic Systems This well-respected, market-leading text discusses the use of digital computers in the real-time control of dynamic systems with an emphasis on the design of digital controls that achieve good dynamic response and small errors while using signals that are sampled in time and quantized in amplitude.
Abstract: Digital Control Of Dynamic Systems This well-respected, market-leading text discusses the use of digital computers in the real-time control of dynamic systems. The emphasis is on the design of digital controls that achieve good dynamic response and small errors while using signals that are sampled in time and quantized in amplitude. Digital Control of Dynamic Systems (3rd Edition): Franklin ... This well-respected, market-leading text discusses the use of digital computers in the real-time control of dynamic systems. The emphasis is on the design of digital controls that achieve good dynamic response and small errors while using signals that are sampled in time and quantized in amplitude. Digital Control of Dynamic Systems: Gene F. Franklin ... Digital Control of Dynamic Systems, 2nd Edition. Gene F. Franklin, Stanford University. J. David Powell, Stanford University Digital Control of Dynamic Systems, 2nd Edition Pearson This well-respected work discusses the use of digital computers in the real-time control of dynamic systems. The emphasis is on the design of digital controls that achieve good dynamic response and small errors while using signals that are sampled in time and quantized in amplitude. MATLAB statements and problems are thoroughly and carefully integrated throughout the book to offer readers a complete design picture. Digital Control of Dynamic Systems, 3rd Edition ... Digital control of dynamic systems | Gene F. Franklin, J. David Powell, Michael L. Workman | download | B–OK. Download books for free. Find books Digital control of dynamic systems | Gene F. Franklin, J ... Abstract This well-respected work discusses the use of digital computers in the real-time control of dynamic systems. The emphasis is on the design of digital controls that achieve good dynamic... (PDF) Digital Control of Dynamic Systems Digital Control of Dynamic Systems, Addison.pdf There is document Digital Control of Dynamic Systems, Addison.pdfavailable here for reading and downloading. Use the download button below or simple online reader. The file extension PDFand ranks to the Documentscategory. Digital Control of Dynamic Systems, Addison.pdf Download ... Automatic control is the science that develops techniques to steer, guide, control dynamic systems. These systems are built by humans and must perform a specific task. Examples of such dynamic systems are found in biology, physics, robotics, finance, etc. Digital Control means that the control laws are implemented in a digital device, such as a microcontroller or a microprocessor. Introduction to Digital Control of Dynamic Systems And ... The discussions are clear, nomenclature is not hard to follow and there are plenty of worked examples. The book covers discretization effects and design by emulation (i.e. design of continuous-time control system followed by discretization before implementation) which are not to be found on every book on digital control. Amazon.com: Customer reviews: Digital Control of Dynamic ... Find helpful customer reviews and review ratings for Digital Control of Dynamic Systems (3rd Edition) at Amazon.com. Read honest and unbiased product reviews from our users. Amazon.com: Customer reviews: Digital Control of Dynamic ... 1.1.2 Digital control Digital control systems employ a computer as a fundamental component in the controller. The computer typically receives a measurement of the controlled variable, also often receives the reference input, and produces its output using an algorithm. Introduction to Applied Digital Control From the Back Cover This well-respected, marketleading text discusses the use of digital computers in the real-time control of dynamic systems. The emphasis is on the design of digital controls that achieve good dynamic response and small errors while using signals that are sampled in time and quantized in amplitude. Digital Control of Dynamic Systems (3rd Edition) Test Bank `Among the advantages of digital logic for control are the increased flexibility `of the control programs and the decision-making or logic capability of digital `systems, which can be combined with the dynamic control function to meet `other system requirements. `The digital controls studied in this book are for closed-loop (feedback) Every day, eBookDaily adds three new free Kindle books to several different genres, such as Nonfiction, Business & Investing, Mystery & Thriller, Romance, Teens & Young Adult, Children's Books, and others.

902 citations

Journal ArticleDOI
TL;DR: This paper constructs grounded graphs to model network localization and applies graph rigidity theory to test the conditions for unique localizability and to construct uniquely localizable networks, and further study the computational complexity of network localization.
Abstract: In this paper, we provide a theoretical foundation for the problem of network localization in which some nodes know their locations and other nodes determine their locations by measuring the distances to their neighbors. We construct grounded graphs to model network localization and apply graph rigidity theory to test the conditions for unique localizability and to construct uniquely localizable networks. We further study the computational complexity of network localization and investigate a subclass of grounded graphs where localization can be computed efficiently. We conclude with a discussion of localization in sensor networks where the sensors are placed randomly

656 citations


Cited by
More filters
Book
01 Jan 1994
TL;DR: In this paper, the authors present a brief history of LMIs in control theory and discuss some of the standard problems involved in LMIs, such as linear matrix inequalities, linear differential inequalities, and matrix problems with analytic solutions.
Abstract: Preface 1. Introduction Overview A Brief History of LMIs in Control Theory Notes on the Style of the Book Origin of the Book 2. Some Standard Problems Involving LMIs. Linear Matrix Inequalities Some Standard Problems Ellipsoid Algorithm Interior-Point Methods Strict and Nonstrict LMIs Miscellaneous Results on Matrix Inequalities Some LMI Problems with Analytic Solutions 3. Some Matrix Problems. Minimizing Condition Number by Scaling Minimizing Condition Number of a Positive-Definite Matrix Minimizing Norm by Scaling Rescaling a Matrix Positive-Definite Matrix Completion Problems Quadratic Approximation of a Polytopic Norm Ellipsoidal Approximation 4. Linear Differential Inclusions. Differential Inclusions Some Specific LDIs Nonlinear System Analysis via LDIs 5. Analysis of LDIs: State Properties. Quadratic Stability Invariant Ellipsoids 6. Analysis of LDIs: Input/Output Properties. Input-to-State Properties State-to-Output Properties Input-to-Output Properties 7. State-Feedback Synthesis for LDIs. Static State-Feedback Controllers State Properties Input-to-State Properties State-to-Output Properties Input-to-Output Properties Observer-Based Controllers for Nonlinear Systems 8. Lure and Multiplier Methods. Analysis of Lure Systems Integral Quadratic Constraints Multipliers for Systems with Unknown Parameters 9. Systems with Multiplicative Noise. Analysis of Systems with Multiplicative Noise State-Feedback Synthesis 10. Miscellaneous Problems. Optimization over an Affine Family of Linear Systems Analysis of Systems with LTI Perturbations Positive Orthant Stabilizability Linear Systems with Delays Interpolation Problems The Inverse Problem of Optimal Control System Realization Problems Multi-Criterion LQG Nonconvex Multi-Criterion Quadratic Problems Notation List of Acronyms Bibliography Index.

11,085 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

9,715 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: A generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, that computes-either exactly or approximately-various marginal functions derived from the global function.
Abstract: Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph, In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.

6,637 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations