scispace - formally typeset
Search or ask a question
Author

Brian D. Ripley

Bio: Brian D. Ripley is an academic researcher. The author has contributed to research in topics: Spatial analysis & Complete spatial randomness. The author has an hindex of 1, co-authored 1 publications receiving 2932 citations.

Papers
More filters
Book
01 Jan 1981

2,940 citations


Cited by
More filters
Book
23 Nov 2005
TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Abstract: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

11,357 citations

Book
16 Dec 2008
TL;DR: The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.
Abstract: The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide variety of algorithms — among them sum-product, cluster variational methods, expectation-propagation, mean field methods, max-product and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.

4,335 citations

Journal Article
TL;DR: In this paper, the authors describe the EM algorithm for finding the parameters of a mixture of Gaussian densities and a hidden Markov model (HMM) for both discrete and Gaussian mixture observation models.
Abstract: We describe the maximum-likelihood parameter estimation problem and how the ExpectationMaximization (EM) algorithm can be used for its solution. We first describe the abstract form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM) (i.e., the Baum-Welch algorithm) for both discrete and Gaussian mixture observation models. We derive the update equations in fairly explicit detail but we do not prove any convergence properties. We try to emphasize intuition rather than mathematical rigor.

2,455 citations

Book
25 Aug 2008
TL;DR: An overview of model-based geostatistics can be found in this paper, where a generalized linear model is proposed for estimating geometrical properties of geometrically constrained data.
Abstract: An overview of model-based geostatistics.- Gaussian models for geostatistical data.- Generalized linear models for geostatistical data.- Classical parameter estimation.- Spatial prediction.- Bayesian inference.- Geostatistical design.

2,397 citations