scispace - formally typeset
Search or ask a question
Author

Brian Evans

Other affiliations: Princeton University, BJ Services Company, University of Houston  ...read more
Bio: Brian Evans is an academic researcher from Curtin University. The author has contributed to research in topics: Deformation (engineering) & Strain rate. The author has an hindex of 45, co-authored 233 publications receiving 9847 citations. Previous affiliations of Brian Evans include Princeton University & BJ Services Company.


Papers
More filters
Journal ArticleDOI
TL;DR: The concept of strength envelopes, developed in the 1970s, allowed quantitative predictions of the strength of the lithosphere based on experimentally determined constitutive equations as mentioned in this paper, which can be applied to understand a broad range of topical problems in regional and global tectonics both on the Earth and on other planetary bodies.
Abstract: The concept of strength envelopes, developed in the 1970s, allowed quantitative predictions of the strength of the lithosphere based on experimentally determined constitutive equations. Initial strength envelopes used an empirical relation for frictional sliding to describe deformation along brittle faults in the upper portion of the lithosphere and power law creep equations to estimate the plastic flow strength of rocks in the deeper part of the lithosphere. In the intervening decades, substantial progress has been made both in understanding the physical mechanisms involved in lithospheric deformation and in refining constitutive equations that describe these processes. The importance of a regime of semibrittle behavior is now recognized. Based on data from rocks without added pore fluids, the transition from brittle deformation to semibrittle flow can be estimated as the point at which the brittle fracture strength equals the peak stress to cause sliding. The transition from semibrittle deformation to plastic flow can be approximated as the stress at which the pressure exceeds the plastic flow strength. Current estimates of these stresses are on the order of a few hundred megapascals for relatively dry rocks. Knowledge of the stability of sliding along faults and of the onset of localization during brittle fracture has improved considerably. If the depth to the bottom of the seismogenic zone is determined by the transition to the stable frictional sliding regime, then that depth will be considerably more shallow than the depth of the transition to the plastic flow regime. Major questions concerning the strength of rocks remain. In particular, the effect of water on strength is critical to accurate predictions. Constitutive equations which include the effects of water fugacity and pore fluid pressure as well as temperature and strain rate are needed for both the brittle sliding and semibrittle flow regimes. Although the constitutive equations for dislocation creep and diffusional creep in single-phase aggregates are more robust, few data exist for plastic deformation in two-phase aggregates. Despite the fact that localization is ubiquitous in rocks deforming both in brittle and plastic regimes, only a limited amount of accurate experimental data are available to constrain predictions of this behavior. Accordingly, flow strengths now predicted from laboratory data probably overestimate the actual rock strength, perhaps by a significant amount. Still, the predictions are robust enough that uncertainties in geometry, mineralogy, loading conditions and thermodynamic state are probably the limiting factors in our understanding. Thus, experimentally determined rheologies can be applied to understand a broad range of topical problems in regional and global tectonics both on the Earth and on other planetary bodies.

1,506 citations

Journal ArticleDOI
TL;DR: In this paper, a limiting yield strength curve, which is primarily a function of temperature, is constructed from data from brittle failure and ductile flow experiments, in order to formulate a more realistic constitutive relation.
Abstract: Summary. Previous attempts to deduce the stress distribution in the bending lithosphere near a consuming plate margin have relied on the observed bathymetry and an assumed constitutive relation for lithospheric behaviour, eg. perfectly elastic, viscous/perfectly plastic, or elastic perfectly plastic. From the point of view of rock mechanics, each of these approximations fails to describe one or more of several basic phenomena, including brittle failure of rock, temperature dependence of elasticity, and temperature and/or strain rate dependence of ductile behaviour. In order to formulate a more realistic constitutive relation, a limiting yield strength curve, which is primarily a function of temperature, is constructed from data from brittle failure and ductile flow experiments. The moments which can be supported by plates with this constitutive behaviour are compared to the moments calculated from bathymetric profiles. The comparison indicates that moments required by the bathymetric data are consistent with moments supported by plates with experimentally determined constitutive laws as extrapolated to geo- logically reasonable temperatures and strain rates. The stresses developed in such models are required to reach values greater than 100 MPat in the depth range 25-45 km. Geotherms necessary for strength curves consistent with moments calculated from the bathymetric data match those derived from heat flow data for the Aleutian, Bonin, Mariana and Tonga trenches. Of the trenches studied, only the geotherm inferred from the Kuril trench data is significantly different, perhaps implying that the Kuril plate is weaker than the others. The strength curves show that as a first approximation it is better to assume that bending moment is independent of curvature of the plate than to assume that bending moment and curvature are linearly related.

843 citations

Journal ArticleDOI
01 Nov 2001-Geology
TL;DR: In this article, the authors deformed cores of peridotite with ∼10%−15% lizardite and chrysotile serpentine to determine the influence of serpentine content on the strength and the style of deformation.
Abstract: We deformed cores of peridotite with ∼10%–15% lizardite and chrysotile serpentine to determine the influence of serpentine content on the strength and the style of deformation. The strength, the pressure dependence of strength, and the nominally nondilatant mode of brittle deformation of slightly serpentinized peridotites are comparable to those of pure serpentinites. These results indicate that deformation is accommodated primarily by serpentine, while olivine, despite being the more abundant component, remains nominally undeformed. On the basis of these data and previous work, we determine that the transition from a “strong,” dilatant dunite rheology to a “weak,” nondilatant serpentinite rheology is not a linear function of the degree of serpentinization. Instead, an abrupt transition in strength is observed at low degrees of serpentinization. The pressure of the transition from localized to distributed deformation also decreases abruptly, from >1000 MPa to 150–350 MPa. The change in rheological behavior occurs at a serpentine content of 10%–15% or less, which corresponds to published compressional seismic velocity of >7.8–7.5 km/s at a pressure of 200 MPa. The seismic velocity of the oceanic lithosphere, particularly of that formed at slow spreading ridges, can thus provide constraints on its mechanical properties at depth. Because slightly serpentinized peridotites have a rheology similar to that of pure serpentinite, significant lithospheric weakening may occur after the onset of alteration near or at the ridge axis.

335 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative review of hardness data and compressive creep measurements obtained under large confining pressures confirms the hypothesis of Rice [1971] that single-crystal hardness measurements, corrected for elastic effects, can be correlated to the fully ductile yielding of a polycrystal by dislocation mechanisms, including dislocation climb and glide.
Abstract: The variation of hardness with temperature was measured for olivine on a number of crystal faces by the Vickers diamond pyramid technique (up to 800°C) and by a mutual indentation technique (for temperatures up to 1500°C). A comparative review of hardness data and compressive creep measurements obtained under large confining pressures confirms the hypothesis of Rice [1971] that single-crystal hardness measurements, corrected for elastic effects, can be correlated to the fully ductile yielding of a polycrystal by intragranular dislocation mechanisms, including dislocation climb and glide. The computed differential yield stresses, σ (in gigapascals), which empirically correspond to a strain rate of 10−5 s−1, were well represented by an equation of the form σ = 9.1(±0.3) - 0.23(±0.01)T2, where T is the absolute temperature (in degrees Kelvin), and the quoted variances are for 1 standard deviation. The olivine data therefore predict a high-stress polycrystalline flow law that may be expressed as = 1.3 × 1012exp - [(60×103)/T][1 - (σ/9.1)]2 where is the strain rate in s−1. A similar functional dependence of strain rate on stress is indicated for Al2O3 for temperatures below 900°C but is contraindicated for MgO and NaCl. Using a semiempirical method of dislocation rosette analysis, the critical resolved shear stress on the {110} [001] slip system was estimated (to 20%) over the temperature range 20°C to 780°C as 1.2 GPa and 0.3 GPa, respectively. These data are useful in providing an upper bound to the yield stress in a region of stress and temperature space not easily accessible by other experimental methods.

297 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used optical and transmission electron microscopy to characterize the deformation of Carrara marble at room temperature to varying strains at confining pressures spanning the range in mechanical behavior from brittle to plastic.
Abstract: Samples of Carrara marble were deformed at room temperature to varying strains at confining pressures spanning the range in mechanical behavior from brittle to plastic. Volumetric strain was measured during the experiments, and the stress-induced microstructure was characterized quantitatively using optical and transmission electron microscopy. The range of confining pressure over which transitional (or semibrittle) deformation occurs is 30–300 MPa. The macroscopic initial yield stress is constant for confining pressures greater than 85 MPa, whereas the differential stress at the onset of dilatancy increases with pressure up to 300 MPa. The dilatancy coefficient decreases rapidly with increasing pressure up to 100 MPa, and then asymptotically approaches zero for pressures up to 300 MPa. The work hardening coefficient increases with pressure up to 450 MPa; the pressure sensitivity is greatest for pressures up to 100 MPa. Active deformation mechanisms include microcracking, twinning, and dislocation glide. Transmission electron microscopy observations indicate that dislocation glide occurs, at least on a local scale, in samples deformed in the semibrittle field at pressures as low as 50 MPa and applied differential stress well below the critical resolved shear stress for glide on the easiest slip system. Cracks and voids frequently nucleate at sites of stress concentration at twin boundaries, at twin terminations, and at the intersection of twin lamallae. Geometries suggestive of crack tip shielding by dislocations are also observed. Stereological measurements indicate that at constant strain in the semibrittle field, the stress-induced crack density and anisotropy decrease with increasing pressure. Crack density and anisotropy in samples deformed to strains of 3–5% in the semibrittle field at pressures up to 120 MPa are comparable to those in the prefailure brittle sample, although an analysis of the energetics of deformation suggests that the ratio of brittle energy dissipation to total energy dissipation is at least 60% lower. We also detect a qualitative difference in the characteristic length of the cracks in the brittle and semibrittle fields. The mean dislocation density at constant differential stress increases significantly for samples deformed at pressures of 230 MPa and greater. Our results suggest that although semibrittle flow occurs over a wide range of pressure, the most marked changes in strain partitioning, and hence the style of deformation occur over a small range in pressure.

273 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Monolayers of alkanethiolates on gold are probably the most studied SAMs to date and offer the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies.
Abstract: The field of self-assembled monolayers (SAMs) has witnessed tremendous growth in synthetic sophistication and depth of characterization over the past 15 years.1 However, it is interesting to comment on the modest beginning and on important milestones. The field really began much earlier than is now recognized. In 1946 Zisman published the preparation of a monomolecular layer by adsorption (self-assembly) of a surfactant onto a clean metal surface.2 At that time, the potential of self-assembly was not recognized, and this publication initiated only a limited level of interest. Early work initiated in Kuhn’s laboratory at Gottingen, applying many years of experience in using chlorosilane derivative to hydrophobize glass, was followed by the more recent discovery, when Nuzzo and Allara showed that SAMs of alkanethiolates on gold can be prepared by adsorption of di-n-alkyl disulfides from dilute solutions.3 Getting away from the moisture-sensitive alkyl trichlorosilanes, as well as working with crystalline gold surfaces, were two important reasons for the success of these SAMs. Many self-assembly systems have since been investigated, but monolayers of alkanethiolates on gold are probably the most studied SAMs to date. The formation of monolayers by self-assembly of surfactant molecules at surfaces is one example of the general phenomena of self-assembly. In nature, self-assembly results in supermolecular hierarchical organizations of interlocking components that provides very complex systems.4 SAMs offer unique opportunities to increase fundamental understanding of self-organization, structure-property relationships, and interfacial phenomena. The ability to tailor both head and tail groups of the constituent molecules makes SAMs excellent systems for a more fundamental understanding of phenomena affected by competing intermolecular, molecular-substrates and molecule-solvent interactions like ordering and growth, wetting, adhesion, lubrication, and corrosion. That SAMs are well-defined and accessible makes them good model systems for studies of physical chemistry and statistical physics in two dimensions, and the crossover to three dimensions. SAMs provide the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies. These studies may eventually produce the design capabilities needed for assemblies of three-dimensional structures.5 However, this will require studies of more complex systems and the combination of what has been learned from SAMs with macromolecular science. The exponential growth in SAM research is a demonstration of the changes chemistry as a disciAbraham Ulman was born in Haifa, Israel, in 1946. He studied chemistry in the Bar-Ilan University in Ramat-Gan, Israel, and received his B.Sc. in 1969. He received his M.Sc. in phosphorus chemistry from Bar-Ilan University in 1971. After a brief period in industry, he moved to the Weizmann Institute in Rehovot, Israel, and received his Ph.D. in 1978 for work on heterosubstituted porphyrins. He then spent two years at Northwestern University in Evanston, IL, where his main interest was onedimensional organic conductors. In 1985 he joined the Corporate Research Laboratories of Eastman Kodak Company, in Rochester, NY, where his research interests were molecular design of materials for nonlinear optics and self-assembled monolayers. In 1994 he moved to Polytechnic University where he is the Alstadt-Lord-Mark Professor of Chemistry. His interests encompass self-assembled monolayers, surface engineering, polymers at interface, and surfaces phenomena. 1533 Chem. Rev. 1996, 96, 1533−1554

7,465 citations

Book
25 Jan 1991
TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Abstract: This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.

3,802 citations

Journal ArticleDOI
TL;DR: In this article, the structural phases and the growth of self-assembled monolayers (SAMs) are reviewed from a surface science perspective, with emphasis on simple model systems, and a summary of the techniques used for the study of SAMs is given.

2,374 citations

Journal ArticleDOI
TL;DR: In this article, a review of the relationship between friction and the properties of earthquake faults is presented, as well as an interpretation of the friction state variable, including its interpretation as a measure of average asperity contact time and porosity within granular fault gouge.
Abstract: This paper reviews rock friction and the frictional properties of earthquake faults. The basis for rate- and state-dependent friction laws is reviewed. The friction state variable is discussed, including its interpretation as a measure of average asperity contact time and porosity within granular fault gouge. Data are summarized showing that friction evolves even during truly stationary contact, and the connection between modern friction laws and the concept of “static” friction is discussed. Measurements of frictional healing, as evidenced by increasing static friction during quasistationary contact, are reviewed, as are their implications for fault healing. Shear localization in fault gouge is discussed, and the relationship between microstructures and friction is reviewed. These data indicate differences in the behavior of bare rock surfaces as compared to shear within granular fault gouge that can be attributed to dilation within fault gouge. Physical models for the characteristic friction distance are discussed and related to the problem of scaling this parameter to seismic faults. Earthquake afterslip, its relation to laboratory friction data, and the inverse correlation between afterslip and shallow coseismic slip are discussed in the context of a model for afterslip. Recent observations of the absence of afterslip are predicted by the model.

1,714 citations

Journal ArticleDOI
TL;DR: Byerlee's law, converted to maximum or minimum stress, is a good upper or lower bound to observed in situ stresses to 5 km, for pore pressure hydrostatic or subhydrostatic as discussed by the authors.
Abstract: Laboratory measurements of rock strength provide limiting values of lithospheric stress, provided that one effective principal stress is known. Fracture strengths are too variable to be useful; however, rocks at shallow depth are probably fractured so that frictional strength may apply. A single linear friction law, termed Byerlee's law, holds for all materials except clays, to pressures of more than 1 GPa, to temperatures of 500°C, and over a wide range of strain rates. Byerlee's law, converted to maximum or minimum stress, is a good upper or lower bound to observed in situ stresses to 5 km, for pore pressure hydrostatic or subhydrostatic. Byerlee's law combined with the quartz or olivine flow law provides a maximum stress profile to about 25 or 50 km, respectively. For a temperature gradient of 15°K/km, stress will be close to zero at the surface and at 25 km (quartz) or 50 km (olivine) and reaches a maximum of 600 MPa (quartz) or 1100 MPa (olivine) for hydrostatic pore pressure. Some new permeability studies of crystalline rocks suggest that pore pressure will be low in the absence of a thick argillaceous cover.

1,707 citations