scispace - formally typeset
Search or ask a question
Author

Brian Gaschen

Bio: Brian Gaschen is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Population & Viral evolution. The author has an hindex of 13, co-authored 18 publications receiving 4989 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A mathematical model of random viral evolution and phylogenetic tree construction is developed and used to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection, suggesting a finite window of potential vulnerability of HIV- 1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.
Abstract: The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.

1,880 citations

Journal ArticleDOI
28 Jun 2002-Science
TL;DR: Consensus or ancestor sequences could be used in vaccine design to minimize the genetic differences between vaccine strains and contemporary isolates, effectively reducing the extent of diversity by half.
Abstract: Globally, human immunodeficiency virus–type 1 (HIV-1) is extraordinarily variable, and this diversity poses a major obstacle to AIDS vaccine development. Currently, candidate vaccines are derived from isolates, with the hope that they will be sufficiently cross-reactive to protect against circulating viruses. This may be overly optimistic, however, given that HIV-1 envelope proteins can differ in more than 30% of their amino acids. To contend with the diversity, country-specific vaccines are being considered, but evolutionary relationships may be more useful than regional considerations. Consensus or ancestor sequences could be used in vaccine design to minimize the genetic differences between vaccine strains and contemporary isolates, effectively reducing the extent of diversity by half.

863 citations

Journal ArticleDOI
TL;DR: A comparison between HIV and influenza virus illustrates the extraordinary scale of HIV variation, and underscores the importance of exploring innovative HIV vaccine strategies.
Abstract: Evolutionary modelling studies indicate less than a century has passed since the most recent common ancestor of the HIV-1 pandemic strains and, in that time frame, an extraordinarily diverse viral population has developed. HIV-1 employs a multitude of schemes to generate variants: accumulation of base substitutions, insertions and deletions, addition and loss of glycosylation sites in the envelope protein, and recombination. A comparison between HIV and influenza virus illustrates the extraordinary scale of HIV variation, and underscores the importance of exploring innovative HIV vaccine strategies. Deeper understanding of the implications of variation for both antibody and T-cell responses may help in the effort to rationally design vaccines that stimulate broad cross-reactivity. The impact of HIV-1 variation on host immune response is reviewed in this context.

534 citations

Journal ArticleDOI
TL;DR: A new Web-based program developed to facilitate the sequon tracking and to define patterns allowed rapid visualization of the two distinctive patterns of sequon variation found in HIV-1, HIV-2, and SIV CPZ, and two shifting sites were identified.
Abstract: Human and simian immunodeficiency viruses (HIV and SIV), influenza virus, and hepatitis C virus (HCV) have heavily glycosylated, highly variable surface proteins. Here we explore N-linked glycosylation site (sequon) variation at the population level in these viruses, using a new Web-based program developed to facilitate the sequon tracking and to define patterns (www.hiv.lanl.gov). This tool allowed rapid visualization of the two distinctive patterns of sequon variation found in HIV-1, HIV-2, and SIV CPZ. The first pattern (fixed) describes readily aligned sites that are either simply present or absent. These sites tend to be occupied by high-mannose glycans. The second pattern (shifting) refers to sites embedded in regions of extreme local length variation and is characterized by shifts in terms of the relative position and local density of sequons; these sites tend to be populated by complex carbohydrates. HIV, with its extreme variation in number and precise location of sequons, does not have a net increase in the number of sites over time at the population level. Primate lentiviral lineages have host species-dependent levels of sequon shifting, with HIV-1 in humans the most extreme. HCV E1 and E2 proteins, despite evolving extremely rapidly through point mutation, show limited sequon variation, although two shifting sites were identified. Human influenza A hemagglutinin H3 HA1 is accumulating sequons over time, but this trend is not evident in any other avian or human influenza A serotypes.

466 citations

Journal ArticleDOI
TL;DR: This work integrated the global sequence and immunology databases to systematically explore the relationship between HIV-1 amino acid sequences and CTL epitope distributions, and identified distinct characteristics of HIV amino acids sequences that correlate with C TL epitope localization.
Abstract: The human cytotoxic T-lymphocyte (CTL) response to human immunodeficiency virus type 1 (HIV-1) has been intensely studied, and hundreds of CTL epitopes have been experimentally defined, published, and compiled in the HIV Molecular Immunology Database. Maps of CTL epitopes on HIV-1 protein sequences reveal that defined epitopes tend to cluster. Here we integrate the global sequence and immunology databases to systematically explore the relationship between HIV-1 amino acid sequences and CTL epitope distributions. CTL responses to five HIV-1 proteins, Gag p17, Gag p24, reverse transcriptase (RT), Env, and Nef, have been particularly well characterized in the literature to date. Through comparing CTL epitope distributions in these five proteins to global protein sequence alignments, we identified distinct characteristics of HIV amino acid sequences that correlate with CTL epitope localization. First, experimentally defined HIV CTL epitopes are concentrated in relatively conserved regions. Second, the highly variable regions that lack epitopes bear cumulative evidence of past immune escape that may make them relatively refractive to CTLs: a paucity of predicted proteasome processing sites and an enrichment for amino acids that do not serve as C-terminal anchor residues. Finally, CTL epitopes are more highly concentrated in alpha-helical regions of proteins. Based on amino acid sequence characteristics, in a blinded fashion, we predicted regions in HIV regulatory and accessory proteins that would be likely to contain CTL epitopes; these predictions were then validated by comparison to new sets of experimentally defined epitopes in HIV-1 Rev, Tat, Vif, and Vpr.

264 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2008-Genetics
TL;DR: A new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping and takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows for substantially increase the computational speed and reliability of the results.
Abstract: Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.

1,765 citations

Journal ArticleDOI
13 Aug 2010-Science
TL;DR: Three broadly neutralizing antibodies are identified, isolated from an HIV-1–infected individual, that exhibited great breadth and potency of neutralization and were specific for the co-receptor CD4-binding site of the glycoprotein 120 (gp120), part of the viral Env spike.
Abstract: Cross-reactive neutralizing antibodies (NAbs) are found in the sera of many HIV-1-infected individuals, but the virologic basis of their neutralization remains poorly understood. We used knowledge of HIV-1 envelope structure to develop antigenically resurfaced glycoproteins specific for the structurally conserved site of initial CD4 receptor binding. These probes were used to identify sera with NAbs to the CD4-binding site (CD4bs) and to isolate individual B cells from such an HIV-1-infected donor. By expressing immunoglobulin genes from individual cells, we identified three monoclonal antibodies, including a pair of somatic variants that neutralized over 90% of circulating HIV-1 isolates. Exceptionally broad HIV-1 neutralization can be achieved with individual antibodies targeted to the functionally conserved CD4bs of glycoprotein 120, an important insight for future HIV-1 vaccine design.

1,713 citations

Journal ArticleDOI
TL;DR: This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory.
Abstract: There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating to the analysis of large-scale genomic data sets.

1,509 citations

Journal ArticleDOI
TL;DR: Plasma virus continually and rapidly evolved to escape neutralization, indicating that neutralizing antibody exerts a level of selective pressure that has been underappreciated based on earlier, less comprehensive characterizations.
Abstract: A recombinant virus assay was used to characterize in detail neutralizing antibody responses directed at circulating autologous HIV in plasma. Examining serial plasma specimens in a matrix format, most patients with primary HIV infection rapidly generated significant neutralizing antibody responses to early (0–39 months) autologous viruses, whereas responses to laboratory and heterologous primary strains were often lower and delayed. Plasma virus continually and rapidly evolved to escape neutralization, indicating that neutralizing antibody exerts a level of selective pressure that has been underappreciated based on earlier, less comprehensive characterizations. These data argue that neutralizing antibody responses account for the extensive variation in the envelope gene that is observed in the early months after primary HIV infection.

1,257 citations

Journal ArticleDOI
04 May 2020-Science
TL;DR: It is shown how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design, and enables mapping of the glycan-processing states across the trimeric viral spike.
Abstract: The emergence of the betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), represents a considerable threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, which mediates cell entry and membrane fusion. The SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in protein folding and immune evasion. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.

1,190 citations