scispace - formally typeset
Search or ask a question
Author

Brian L. Erstad

Bio: Brian L. Erstad is an academic researcher from University of Arizona. The author has contributed to research in topics: Medicine & Intensive care unit. The author has an hindex of 40, co-authored 239 publications receiving 5641 citations. Previous affiliations of Brian L. Erstad include University of Rochester Medical Center & The American College of Financial Services.


Papers
More filters
Journal ArticleDOI
TL;DR: A Task Force comprising 17 members of the Society of Critical Medicine with particular expertise in the use of neuromuscular-blocking agents met via teleconference and three face-to-face meetings and communicated via e-mail to examine the evidence and develop these practice guidelines.
Abstract: The decision to treat a patient in the intensive care unit (ICU) with neuromuscular blocking agents (NMBAs) (for reasons other than the placement of an endotracheal tube) is a difficult one that is guided more commonly by individual practitioner preference than by standards based on evidence-based medicine. Commonly cited reasons for the use of NMBAs in the ICU are to facilitate mechanical ventilation or different modes of mechanical ventilation and to manage patients with head trauma or tetanus. Independent of the reasons for using NMBAs, we emphasize that all other modalities to improve the clinical situation must be tried, using NMBAs only as a last resort. In 1995, the American College of Critical Care Medicine (ACCM) of the Society of Critical Care Medicine (SCCM) published guidelines for the use of NMBAs in the ICU. The present document is the result of an attempt to reevaluate the literature that has appeared since the last guidelines were published and, based on that review, to update the recommendations for the use of NMBAs in the ICU. Appendix A summarizes our recommendations. Using methods previously described to evaluate the literature and grade the evidence (1), the task force reviewed the physiology of the neuromuscular receptor, the pharmacology of the NMBAs currently used in the ICU, the means to monitor the degree of blockade, the complications associated with NMBAs, and the economic factors to consider when choosing a drug.

441 citations

Journal ArticleDOI
TL;DR: Using a direct observation approach, this study found a higher incidence of potential and actual, preventable adverse drug events and an increased ratio of potential to actual, Preventable adverseDrug events compared with studies that used chart reviews and solicited incident reporting.
Abstract: Objective:To determine the incidence and preventability of medication errors and potential/actual adverse drug events. To evaluate system failures leading to error occurrence.Design:Prospective, direct observation study.Setting:Tertiary care academic medical center.Patients:Patients in a medical/sur

372 citations

Journal ArticleDOI
TL;DR: Lorazepam and wrong infusion rates are associated with errors that occurred frequently, resulted in the greatest potential for harm and were common oversights in the system.
Abstract: Objective: To quantify the incidence and specify the types of medication administration errors from a list of error-prone medications and to determine if patient harm resulted from these errors. Design: An observational evaluation. Setting: Five intensive care units (ICUs) in the United States. Patients and participants: Eight hundred fifty-one patients who were at least 18 years of age and admitted to surgical, medical or mixed ICUs during a 3 month period were included. Interventions: None. Measurements and results: A list of error-prone medications was adapted from the literature and evaluated for medication errors and patient harm. Of 5,744 observations in 851 patients, 187 (3.3%) medication administration errors were detected. the therapeutic classes most commonly associated with errors were vasoactive drugs 61 (32.6%) and sedative/analgesics 48 (25.7%). The most common type of error was wrong infusion rate with 71 (40.1%) errors. Twenty-one errors did not reach the patient and 159 reached the patient but did not result in harm, increased monitoring or intervention. Five errors required increased patient monitoring and two required intervention. None of the errors resulted in patient death. Conclusions: This multicenter evaluation found fewer medication administration errors than the published literature, possibly due to the varying observational techniques and pharmacist involvement. Lorazepam and wrong infusion rates are associated with errors that occurred frequently, resulted in the greatest potential for harm and were common oversights in the system. These errors should be considered potential areas for betterment in the medication use process to improve patient safety.

207 citations

Journal ArticleDOI
TL;DR: In the acute care setting, calculation of dose ratios for opioids, based solely on opioid conversion tables, is an oversimplification of pain management, with a potential for adverse consequences.
Abstract: Objective:To discuss the historical basis and limitations of opioid conversion tables, review the relevant literature, and establish an evidence-based equianalgesic dose ratio (EDR) table for performing conversions in the acute care setting.Data Sources:Articles were identified through searches of MEDLINE (1966–January 2007) using the key words opioid, tolerance, conversion, dose, equianalgesic, equipotent, acute care, morphine, hydromorphone, fentanyl, methadone, and oxycodone. Additional references were located through a review of the bibliographies of articles cited and references cited in conversion tables.Study Selection and Data Extraction:All data sources identified were evaluated, and all information deemed relevant was included, with the exception of case series and case reports when higher level evidence was available.Data Synthesis:Opioid conversion tables are published in major textbooks, medical references, national guidelines, and review articles. Some conversion tables do not accurately ref...

204 citations

Journal ArticleDOI
TL;DR: Among the interventions performed and documented by a clinical pharmacist in an ICU, patient care rounds and chart-review activities were associated with the greatest number of interventions and the greatest potential cost avoidance.
Abstract: Purpose. The cost implications of and potential adverse events prevented by the interventions of a critical care pharmacist were studied. Methods. A decentralized clinical pharmacist assigned to a surgical intensive care unit (ICU) documented all interventions made from mid-October 2003 through February 2004 using a standardized written form. The data were retrospectively evaluated and the following information was extracted: amount of time spent performing various clinical activities, how drug-related problems were identified (e.g., order entry versus chart review), and a general description of the interventions. The interventions were independently reviewed by two other clinical pharmacists to determine whether an actual or potential adverse drug event (ADE) would have occurred without the intervention, the probability that an ADE would have occurred without the intervention, the type of intervention, and potential cost avoidance of the intervention. Once the evaluations were completed, the data obtained from order entry and verification activities were compared with the data obtained during other clinical functions. Results. A total of 129 interventions were documented over 4.5 months. The majority of interventions were identified during chart review (40%) and patient care rounds (39%). The potential cost avoidance of the documented interventions was $205,919–$280,421. Interventions identified during patient care rounds and chart review were most likely to achieve the greatest impact on cost avoidance. Conclusion. Among the interventions performed and documented by a clinical pharmacist in an ICU, patient care rounds and chart-review activities were associated with the greatest number of interventions and the greatest potential cost avoidance.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Abstract: To provide an update to “Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012”. A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

4,303 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an update to the original Surviving Sepsis Campaign clinical management guidelines for management of severe sepsis and septic shock, published in 2004.
Abstract: Objective To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004.

3,928 citations

01 Jan 2008
TL;DR: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, the GRADE system was used to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations.
Abstract: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004. Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation [1] indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations [2] indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7–10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure ≥ 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7–9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.

3,824 citations