scispace - formally typeset
Search or ask a question
Author

Brian L. Smith

Other affiliations: Old Dominion University, Texas Southern University, Halifax  ...read more
Bio: Brian L. Smith is an academic researcher from University of Virginia. The author has contributed to research in topics: Traffic flow & Intelligent transportation system. The author has an hindex of 31, co-authored 153 publications receiving 4244 citations. Previous affiliations of Brian L. Smith include Old Dominion University & Texas Southern University.


Papers
More filters
Journal ArticleDOI
TL;DR: This research effort seeks to examine the theoretical foundation of nonparametric regression and to answer the question of whether non parametric regression based on heuristically improved forecast generation methods approach the single interval traffic flow prediction performance of seasonal ARIMA models.
Abstract: Single point short-term traffic flow forecasting will play a key role in supporting demand forecasts needed by operational network models. Seasonal autoregressive integrated moving average (ARIMA), a classic parametric modeling approach to time series, and nonparametric regression models have been proposed as well suited for application to single point short-term traffic flow forecasting. Past research has shown seasonal ARIMA models to deliver results that are statistically superior to basic implementations of nonparametric regression. However, the advantages associated with a data-driven nonparametric forecasting approach motivate further investigation of refined nonparametric forecasting methods. Following this motivation, this research effort seeks to examine the theoretical foundation of nonparametric regression and to answer the question of whether nonparametric regression based on heuristically improved forecast generation methods approach the single interval traffic flow prediction performance of seasonal ARIMA models.

926 citations

Journal ArticleDOI
TL;DR: This research effort focused on developing traffic volume forecasting models for two sites on Northern Virginia's Capital Beltway, and found that the nonparametric regression model was easy to implement, and proved to be portable, performing well at two distinct sties.
Abstract: The capability to forecast traffic volume in an operational setting has been identified as a critical need for intelligent transportation systems (ITS). In particular, traffic volume forecasts will support proactive, dynamic traffic control. However, previous attempts to develop traffic volume forecasting models have met with limited success. This research effort focused on developing traffic volume forecasting models for two sites on Northern Virginia's Capital Beltway. Four models were developed and tested for the freeway traffic flow forecasting problem, which is defined as estimating traffic flow 15 minutes into the future. They were the historical average, time-series, neural network, and nonparametric regression models. The nonparametric regression model significantly outperformed the other models. A Wilcoxon signed-rank test revealed that the nonparametric regression model was easy to implement, and proved to be portable, performing well at two distinct sties. Based on its success, research is ongoing to refine the nonparametric regression model and to extend it to produce multiple interval forecasts.

566 citations

Journal Article
TL;DR: In a comparison of a backpropagation neural network model with the more traditional approaches of an historical, data-based algorithm and a time-series model, the back Propagation model was clearly superior, although all three models did an adequate job of predicting future traffic volumes.
Abstract: Much of the current activity in the area of intelligent vehicle-highway systems (IVHSs) focuses on one simple objective: to collect more data. Clearly, improvements in sensor technology and communication systems will allow transportation agencies to more closely monitor the condition of the surface transportation system. However, monitoring alone cannot improve the safety or efficiency of the system. It is imperative that surveillance data be used to manage the system in a proactive rather than a reactive manner. Proactive traffic management will require the ability to predict traffic conditions. Previous predictive modeling approaches can be grouped into three categories: (a) historical, data-based algorithms; (b) time-series models; and (c) simulations. A relatively new mathematical model, the neural network, offers an attractive alternative because neural networks can model undefined, complex nonlinear surfaces. In a comparison of a backpropagation neural network model with the more traditional approaches of an historical, data-based algorithm and a time-series model, the backpropagation model was clearly superior, although all three models did an adequate job of predicting future traffic volumes. The backpropagation model was more responsive to dynamic conditions than the historical, data-based algorithm, and it did not experience the lag and overprediction characteristics of the time-series model. Given these advantages and the backpropagation model's ability to run in a parallel computing environment, it appears that such neural network prediction models hold considerable potential for use in real-time IVHS applications.

331 citations

Journal ArticleDOI
TL;DR: A decentralized, fully adaptive traffic control algorithm, the predictive microscopic simulation algorithm, which uses a rolling-horizon strategy in which the phasing is chosen to optimize an objective function over a 15-s period in the future is developed.
Abstract: The operation of traffic signals is currently limited by the data available from traditional point sensors. Point detectors can provide only limited vehicle information at a fixed location. The most advanced adaptive control strategies are often not implemented in the field because of their operational complexity and high-resolution detection requirements. However, a new initiative known as connected vehicles allows the wireless transmission of the positions, headings, and speeds of vehicles for use by the traffic controller. A new traffic control algorithm, the predictive microscopic simulation algorithm, which uses these new, more robust data, was developed. The decentralized, fully adaptive traffic control algorithm uses a rolling-horizon strategy in which the phasing is chosen to optimize an objective function over a 15-s period in the future. The objective function uses either delay only or a combination of delay, stops, and decelerations. To measure the objective function, the algorithm uses a micro...

249 citations

Journal ArticleDOI
TL;DR: The feasibility and applicability of imputing missing traffic data are addressed, and a preliminary analysis of several heuristic and statistical imputation techniques is performed.
Abstract: Many states have implemented large-scale transportation management systems to improve mobility in urban areas. These systems are highly prone to missing and erroneous data, which results in drastically reduced data sets for analysis and real-time operations. Imputation is the practice of filling in missing data with estimated values. Currently, the transportation industry generally does not use imputation as a means for handling missing data. Other disciplines have recognized the importance of addressing missing data and, as a result, methods and software for imputing missing data are becoming widely available. The feasibility and applicability of imputing missing traffic data are addressed, and a preliminary analysis of several heuristic and statistical imputation techniques is performed. Preliminary results produced excellent performance in the case study and indicate that the statistical techniques are more accurate while maintaining the natural characteristics of the data.

158 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: A novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently and is applied for the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction.
Abstract: Accurate and timely traffic flow information is important for the successful deployment of intelligent transportation systems. Over the last few years, traffic data have been exploding, and we have truly entered the era of big data for transportation. Existing traffic flow prediction methods mainly use shallow traffic prediction models and are still unsatisfying for many real-world applications. This situation inspires us to rethink the traffic flow prediction problem based on deep architecture models with big traffic data. In this paper, a novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently. A stacked autoencoder model is used to learn generic traffic flow features, and it is trained in a greedy layerwise fashion. To the best of our knowledge, this is the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction. Moreover, experiments demonstrate that the proposed method for traffic flow prediction has superior performance.

2,306 citations

Journal ArticleDOI
TL;DR: This article places data fusion into the greater context of data integration, precisely defines the goals of data fusion, namely, complete, concise, and consistent data, and highlights the challenges of data Fusion.
Abstract: The development of the Internet in recent years has made it possible and useful to access many different information systems anywhere in the world to obtain information. While there is much research on the integration of heterogeneous information systems, most commercial systems stop short of the actual integration of available data. Data fusion is the process of fusing multiple records representing the same real-world object into a single, consistent, and clean representation.This article places data fusion into the greater context of data integration, precisely defines the goals of data fusion, namely, complete, concise, and consistent data, and highlights the challenges of data fusion, namely, uncertain and conflicting data values. We give an overview and classification of different ways of fusing data and present several techniques based on standard and advanced operators of the relational algebra and SQL. Finally, the article features a comprehensive survey of data integration systems from academia and industry, showing if and how data fusion is performed in each.

1,797 citations

Journal ArticleDOI
TL;DR: A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Abstract: Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.

1,521 citations