scispace - formally typeset
Search or ask a question
Author

Brian Reed

Bio: Brian Reed is an academic researcher from Life Technologies. The author has contributed to research in topics: Nucleic acid & Nucleotide. The author has an hindex of 6, co-authored 17 publications receiving 2182 citations.

Papers
More filters
Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: A DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes, showing its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
Abstract: The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

2,246 citations

Patent
14 Jul 2015
TL;DR: In this article, an automated template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, a thermal plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem.
Abstract: An automated template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, a thermal plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermal subsystem, in automated fashion. The thermal subsystem can treat an inverse emulsion passed therethrough. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.

28 citations

Patent
Brian Reed1
11 Jun 2015
TL;DR: In this article, a method of separating bead substrates is proposed, which consists of applying an emulsion to a dispersed phase of the emulsion, which includes an unbound polynucleotide, a first set of bead substrate and a second set of substrate segments complementary to a coupling oligonucleotide.
Abstract: A method of separating bead substrates includes applying an emulsion to an emulsion-breaking solution. A dispersed phase of the emulsion includes an unbound polynucleotide, a first set of bead substrates and a second set of bead substrates. The unbound polynucleotide includes a segment complementary to a coupling oligonucleotide. The first set of bead substrates includes the coupling oligonucleotide extended to include a segment complementary to a portion of the unbound polynucleotide. The second set of bead substrates includes the coupling oligonucleotide. The emulsion-breaking solution includes an interference probe having a sequence similar to the coupling oligonucleotide or complementary to the coupling oligonucleotide. The method further includes binding beads of the first set of bead substrates to separation substrates and separating unbound beads of the second set of bead substrates from the beads of the first set of bead substrates bound to the separation substrates.

22 citations

Patent
20 Apr 2012
TL;DR: In this article, the authors present methods, compositions, systems, apparatus, and kits for depositing samples onto surfaces, where the samples can include one or more particles, and the surface can include reaction chambers.
Abstract: Methods, compositions, systems, apparatus, and kits are provided for depositing samples onto surfaces. The samples can include one or more particles, and the surface can include one or more reaction chambers. In some embodiments, the depositing can include the use of companion particles in combination with sample particles.

7 citations

Patent
20 May 2016
TL;DR: In this paper, methods of sequencing nucleic acids based on luminescence lifetimes and/or intensities are provided. But these methods do not consider the effect of the number of luminescently labeled nucleotides incorporated during the reaction.
Abstract: Methods of sequencing molecules based on luminescence lifetimes and/or intensities are provided. In some aspects, methods of sequencing nucleic acids involve determining the luminescence lifetimes, and optionally luminescence intensities, of a series of luminescently labeled nucleotides incorporated during a nucleic acid sequencing reaction.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations

Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

Journal ArticleDOI
TL;DR: This protocol provides a workflow for genome-independent transcriptome analysis leveraging the Trinity platform and presents Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes.
Abstract: De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.

6,369 citations

Journal ArticleDOI
TL;DR: The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
Abstract: 16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.

5,346 citations

Journal ArticleDOI
TL;DR: These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.
Abstract: Since the completion of the human genome project in 2003, extraordinary progress has been made in genome sequencing technologies, which has led to a decreased cost per megabase and an increase in the number and diversity of sequenced genomes. An astonishing complexity of genome architecture has been revealed, bringing these sequencing technologies to even greater advancements. Some approaches maximize the number of bases sequenced in the least amount of time, generating a wealth of data that can be used to understand increasingly complex phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions. These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.

3,096 citations