scispace - formally typeset
Search or ask a question
Author

Brian S. Doyle

Bio: Brian S. Doyle is an academic researcher from Intel. The author has contributed to research in topics: Layer (electronics) & Transistor. The author has an hindex of 59, co-authored 327 publications receiving 10136 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Fully depleted tri-gate CMOS transistors with 60 nm physical gate lengths on SOI substrates have been fabricated in this article, where the transistors show near-ideal subthreshold gradient and excellent DIBL behavior, and have drive current characteristics greater than any non-planar devices reported so far, for correctly-targeted threshold voltages.
Abstract: Fully-depleted (FD) tri-gate CMOS transistors with 60 nm physical gate lengths on SOI substrates have been fabricated. These devices consist of a top and two side gates on an insulating layer. The transistors show near-ideal subthreshold gradient and excellent DIBL behavior, and have drive current characteristics greater than any non-planar devices reported so far, for correctly-targeted threshold voltages. The tri-gate devices also demonstrate full depletion at silicon body dimensions approximately 1.5 - 2 times greater than either single gate SOI or non-planar double-gate SOI for similar gate lengths, indicating that these devices are easier to fabricate using the conventional fabrication tools. Comparing tri-gate transistors to conventional bulk CMOS device at the same technology node, these non-planar devices are found to be competitive with similarly-sized bulk CMOS transistors. Furthermore, three-dimensional (3-D) simulations of tri-gate transistors with transistor gate lengths down to 30 nm show that the 30 nm tri-gate device remains fully depleted, with near-ideal subthreshold swing and excellent short channel characteristics, suggesting that the tri-gate transistor could pose a viable alternative to bulk transistors in the near future.

505 citations

Patent
30 Sep 2004
TL;DR: In this paper, a gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the SINR, and a pair of source and drain regions are then formed on opposite sides of the gate electrode.
Abstract: A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate is claimed. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are then formed in the semiconductor body on opposite sides of the gate electrode.

394 citations

Journal ArticleDOI
Robert S. Chau1, Brian S. Doyle1, Suman Datta1, Jack T. Kavalieros1, Kevin Zhang1 
TL;DR: Given feature sizes as small as a few nanometres, what will the future hold for integrated electronics?
Abstract: Integrated electronics has come a long way since the invention of the transistor in 1947 and the fabrication of the first integrated circuit in 1958. Given feature sizes as small as a few nanometres, what will the future hold for integrated electronics?

371 citations

Patent
Brian S. Doyle1, Peng Cheng1
14 Mar 2000
TL;DR: In this article, the authors proposed a method of forming reduced feature size spacers, where a semiconductor substrate has an area region, and a first spacer is constructed over a portion of the area region of the substrate.
Abstract: The invention relates to a method of forming reduced feature size spacers. The method includes providing a semiconductor substrate having an area region; patterning a first spacer over a portion of the area region of the substrate, the first spacer having a first thickness and opposing side portions; patterning a pair of second spacers, each second spacer adjacent to a side portion of the first spacer, each second spacer having a second thickness in opposing side portions, wherein the second thickness is less than the first thickness; removing the first spacer; patterning a plurality of third spacers, each third spacer adjacent to one of the side portions of one of the second spacers, each one of the third spacers having a third thickness, wherein the third thickness is less than the second thickness; and removing the second spacers. The invention also relates to a field of effect transistor. The transistor includes a semiconductor substrate having a source region and a drain region; a gate area of the substrate surface; a channel region in the substrate having a cross-sectional area defined by a portion of the gate area, a channel length measured accross a portion of the channel region between the source region and the drain region; and a trench formed in a portion of the channel region, the trench having a trench length substantially equivalent to the channel length.

306 citations

Patent
30 Jun 2005
TL;DR: In this article, a contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies is presented.
Abstract: A contact architecture for nanoscale channel devices having contact structures coupling to and extending between source or drain regions of a device having a plurality of parallel semiconductor bodies. The contact structures being able to contact parallel semiconductor bodies having sub-lithographic pitch.

221 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new type of transistor in which there are no junctions and no doping concentration gradients is proposed and demonstrated, which has near-ideal subthreshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.
Abstract: All existing transistors are based on the use of semiconductor junctions formed by introducing dopant atoms into the semiconductor material. As the distance between junctions in modern devices drops below 10 nm, extraordinarily high doping concentration gradients become necessary. Because of the laws of diffusion and the statistical nature of the distribution of the doping atoms, such junctions represent an increasingly difficult challenge for the semiconductor industry. Here, we propose and demonstrate a new type of transistor in which there are no junctions and no doping concentration gradients. These devices have full CMOS functionality and are made using silicon nanowires. They have near-ideal subthreshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.

2,090 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Patent
11 Jan 2011
TL;DR: In this article, an intelligent automated assistant system engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions.
Abstract: An intelligent automated assistant system engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions. The system can be implemented using any of a number of different platforms, such as the web, email, smartphone, and the like, or any combination thereof. In one embodiment, the system is based on sets of interrelated domains and tasks, and employs additional functionally powered by external services with which the system can interact.

1,462 citations

Journal ArticleDOI
Jie Xiang1, Wei Lu1, Yongjie Hu1, Yue Wu1, Hao Yan1, Charles M. Lieber1 
25 May 2006-Nature
TL;DR: Comparison of the intrinsic switching delay, τ = CV/I, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFets.
Abstract: Field-effect transistors (FETs) based on semi-conductor nanowires could one day replace standard silicon MOSFETs in miniature electronic circuits. MOSFETs, or metal-oxide semiconductor field-effect transistors, are a type of transistor used for high-speed switching and in a computer's integrated circuits. A specially designed nanowire with a germanium shell and silicon core has shown promise as a nanometre-scale field-effect transistor: it has a near-perfect channel for electronic conduction. Now, in transistor configuration, this germanium/silicon nanowire is shown to have properties including high conductance and short switching time delay that are better than state-of-the-art silicon MOSFETs. In a transistor configuration, a new germanium/silicon nanowire has characteristics such as conductance, on-current and switching time delay that are better than those of state-of-the-art silicon metal-oxide-semiconductor field-effect transitors. Semiconducting carbon nanotubes1,2 and nanowires3 are potential alternatives to planar metal-oxide-semiconductor field-effect transistors (MOSFETs)4 owing, for example, to their unique electronic structure and reduced carrier scattering caused by one-dimensional quantum confinement effects1,5. Studies have demonstrated long carrier mean free paths at room temperature in both carbon nanotubes1,6 and Ge/Si core/shell nanowires7. In the case of carbon nanotube FETs, devices have been fabricated that work close to the ballistic limit8. Applications of high-performance carbon nanotube FETs have been hindered, however, by difficulties in producing uniform semiconducting nanotubes, a factor not limiting nanowires, which have been prepared with reproducible electronic properties in high yield as required for large-scale integrated systems3,9,10. Yet whether nanowire field-effect transistors (NWFETs) can indeed outperform their planar counterparts is still unclear4. Here we report studies on Ge/Si core/shell nanowire heterostructures configured as FETs using high-κ dielectrics in a top-gate geometry. The clean one-dimensional hole-gas in the Ge/Si nanowire heterostructures7 and enhanced gate coupling with high-κ dielectrics give high-performance FETs values of the scaled transconductance (3.3 mS µm-1) and on-current (2.1 mA µm-1) that are three to four times greater than state-of-the-art MOSFETs and are the highest obtained on NWFETs. Furthermore, comparison of the intrinsic switching delay, τ = CV/I, which represents a key metric for device applications4,11, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFETs.

1,454 citations

Journal ArticleDOI
17 Nov 2011-Nature
TL;DR: In this article, the electron transport properties of group III-V compound semiconductors have been used for the development of the first nanometre-scale logic transistors, which is the first step towards the first IC transistors.
Abstract: For 50 years the exponential rise in the power of electronics has been fuelled by an increase in the density of silicon complementary metal-oxide-semiconductor (CMOS) transistors and improvements to their logic performance. But silicon transistor scaling is now reaching its limits, threatening to end the microelectronics revolution. Attention is turning to a family of materials that is well placed to address this problem: group III-V compound semiconductors. The outstanding electron transport properties of these materials might be central to the development of the first nanometre-scale logic transistors.

1,446 citations