scispace - formally typeset
Search or ask a question
Author

Bridget Duvall

Bio: Bridget Duvall is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: D-amino acid oxidase & Glutamate carboxypeptidase II. The author has an hindex of 12, co-authored 23 publications receiving 550 citations. Previous affiliations of Bridget Duvall include Eisai & Chiba University.

Papers
More filters
Journal ArticleDOI
TL;DR: In an attempt to identify more potent GLS inhibitors with improved drug-like molecular properties, a series of BPTES analogs were synthesized and evaluated and revealed that some truncated analogs retained the potency of B PTES, presenting an opportunity to improve its aqueous solubility.
Abstract: Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a potent and selective allosteric inhibitor of kidney-type glutaminase (GLS) that has served as a molecular probe to determine the therapeutic potential of GLS inhibition. In an attempt to identify more potent GLS inhibitors with improved drug-like molecular properties, a series of BPTES analogs were synthesized and evaluated. Our structure-activity relationship (SAR) studies revealed that some truncated analogs retained the potency of BPTES, presenting an opportunity to improve its aqueous solubility. One of the analogs, N-(5-{2-[2-(5-amino-[1,3,4]thiadiazol-2-yl)-ethylsulfanyl]-ethyl}-[1,3,4]thiadiazol-2-yl)-2-phenyl-acetamide 6, exhibited similar potency and better solubility relative to BPTES and attenuated the growth of P493 human lymphoma B cells in vitro as well as in a mouse xenograft model.

191 citations

Journal ArticleDOI
TL;DR: Oral administration of CBIO in conjunction with d-serine enhanced the plasma and brain levels of d-Serine in rats compared to the oral administration of d -serine alone.
Abstract: D-amino acid oxidase (DAAO) catalyzes the oxidation of D-amino acids including d-serine, a full agonist at the glycine site of the NMDA receptor. A series of benzo[ d]isoxazol-3-ol derivatives were synthesized and evaluated as DAAO inhibitors. Among them, 5-chloro-benzo[ d]isoxazol-3-ol (CBIO) potently inhibited DAAO with an IC50 in the submicromolar range. Oral administration of CBIO in conjunction with d-serine enhanced the plasma and brain levels of d-serine in rats compared to the oral administration of d-serine alone.

136 citations

Journal ArticleDOI
TL;DR: It is demonstrated that compound 7a can serve as an acid-stable alternative to 5 as a pharmacoenhancer of drugs subject to CDA-mediated metabolism.
Abstract: Several 2′-fluorinated tetrahydrouridine derivatives were synthesized as inhibitors of cytidine deaminase (CDA). (4R)-2′-Deoxy-2′,2′-difluoro-3,4,5,6-tetrahydrouridine (7a) showed enhanced acid stability over tetrahydrouridine (THU) 5 at its N-glycosyl bond. As a result, compound 7a showed an improved oral pharmacokinetic profile with a higher and more reproducible plasma exposure in rhesus monkeys compared to 5. Co-administration of 7a with decitabine, a CDA substrate, boosted the plasma levels of decitabine in rhesus monkeys. These results demonstrate that compound 7a can serve as an acid-stable alternative to 5 as a pharmacoenhancer of drugs subject to CDA-mediated metabolism.

42 citations

Journal ArticleDOI
TL;DR: An overview of the progress made to date in the development of GLS inhibitors is provided and the remarkable transformation of the unfavorable lead into "druglike" compounds guided by systematic SAR studies is highlighted.
Abstract: Kidney-type glutaminase (GLS), the first enzyme in the glutaminolysis pathway, catalyzes the hydrolysis of glutamine to glutamate. GLS was found to be upregulated in many glutamine-dependent cancer cells. Therefore, selective inhibition of GLS has gained substantial interest as a therapeutic approach targeting cancer metabolism. Bis-2-[5-(phenylacetamido)-1,3,4-thiadiazol-2-yl]ethyl sulfide (BPTES), despite its poor physicochemical properties, has served as a key molecular template in subsequent efforts to identify more potent and drug-like allosteric GLS inhibitors. This review article provides an overview of the progress made to date in the development of GLS inhibitors and highlights the remarkable transformation of the unfavorable lead into “druglike” compounds guided by systematic SAR studies.

36 citations

Journal ArticleDOI
TL;DR: A series of thiol-based inhibitors containing a benzyl moiety at the P1' position have been synthesized and tested for their abilities to inhibit glutamate carboxypeptidase II (GCP II), finding 3-(2-Carboxy-5-mercaptopentyl)benzoic acid 6c to be the most potent inhibitor.
Abstract: A series of thiol-based inhibitors containing a benzyl moiety at the P1‘ position have been synthesized and tested for their abilities to inhibit glutamate carboxypeptidase II (GCP II). 3-(2-Carboxy-5-mercaptopentyl)benzoic acid 6c was found to be the most potent inhibitor with an IC50 value of 15 nM, 6-fold more potent than 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), a previously discovered, orally active GCP II inhibitor. Subsequent SAR studies have revealed that the phenoxy and phenylsulfanyl analogues of 6c, 3-(1-carboxy-4-mercaptobutoxy)benzoic acid 26a and 3-[(1-carboxy-4-mercaptobutyl)thio]benzoic acid 26b, also possess potent inhibitory activities toward GCP II. In the rat chronic constriction injury (CCI) model of neuropathic pain, compounds 6c and 26a significantly reduced hyperalgesia following oral administration (1.0 mg/kg/day).

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review summarizes the progress and the promise of five key approaches for the development of RAS-inhibitory molecules and addresses the issue of whether blocking RAS membrane association is a viable approach.
Abstract: Despite more than three decades of intensive effort, no effective pharmacological inhibitors of the RAS oncoproteins have reached the clinic, prompting the widely held perception that RAS proteins are 'undruggable'. However, recent data from the laboratory and the clinic have renewed our hope for the development of RAS-inhibitory molecules. In this Review, we summarize the progress and the promise of five key approaches. Firstly, we focus on the prospects of using direct inhibitors of RAS. Secondly, we address the issue of whether blocking RAS membrane association is a viable approach. Thirdly, we assess the status of targeting RAS downstream effector signalling, which is arguably the most favourable current approach. Fourthly, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, RAS-mediated changes in cell metabolism have recently been described and we discuss whether these changes could be exploited for new therapeutic directions. We conclude with perspectives on how additional complexities, which are not yet fully understood, may affect each of these approaches.

1,453 citations

Journal ArticleDOI
TL;DR: Together, these data provide a strong rationale for the clinical investigation of CB-839 as a targeted therapeutic in patients with TNBC and other glutamine-dependent tumors.
Abstract: Glutamine serves as an important source of energy and building blocks for many tumor cells. The first step in glutamine utilization is its conversion to glutamate by the mitochondrial enzyme glutaminase. CB-839 is a potent, selective, and orally bioavailable inhibitor of both splice variants of glutaminase (KGA and GAC). CB-839 had antiproliferative activity in a triple-negative breast cancer (TNBC) cell line, HCC-1806, that was associated with a marked decrease in glutamine consumption, glutamate production, oxygen consumption, and the steady-state levels of glutathione and several tricarboxylic acid cycle intermediates. In contrast, no antiproliferative activity was observed in an estrogen receptor-positive cell line, T47D, and only modest effects on glutamine consumption and downstream metabolites were observed. Across a panel of breast cancer cell lines, GAC protein expression and glutaminase activity were elevated in the majority of TNBC cell lines relative to receptor positive cells. Furthermore, the TNBC subtype displayed the greatest sensitivity to CB-839 treatment and this sensitivity was correlated with (i) dependence on extracellular glutamine for growth, (ii) intracellular glutamate and glutamine levels, and (iii) GAC (but not KGA) expression, a potential biomarker for sensitivity. CB-839 displayed significant antitumor activity in two xenograft models: as a single agent in a patient-derived TNBC model and in a basal like HER2(+) cell line model, JIMT-1, both as a single agent and in combination with paclitaxel. Together, these data provide a strong rationale for the clinical investigation of CB-839 as a targeted therapeutic in patients with TNBC and other glutamine-dependent tumors.

730 citations

Journal ArticleDOI
TL;DR: It is likely that isocarbostyril constituents of the Amaryllidaceae, such as narciclasine, pancratistatin and their congeners, are the most important metabolites responsible for the therapeutic benefits of these plants in the folk medical treatment of cancer.
Abstract: Ornamental flower growers know that placing a cut daffodil (a.k.a. narcissus) in a vase with other flowers has a negative effect on the quality of those flowers and significantly shortens their vase life. Furthermore, a common horticultural practice for the cultivation of narcissus flowers involves the introduction of cuts on the bulbs before immersing them into water. The mucilage that leaches out from the cuts is constantly removed by frequent changing of water and this leads to sprouting. These observations raise speculation that specific components in the mucilage of the narcissus bulbs may have powerful growth-inhibitory effects. Historical use of narcissus flowers, as well as at least thirty other plants of the Amaryllidaceae family, in folk medicine for the management of cancer1 speaks volumes to validate this conjecture. Indeed, powerful anticancer properties of Narcissus poeticus L. were already known to the Father of Medicine, Hippokrates of Kos (ca. B.C. 460–370), who recommended a pessary prepared from narcissus oil for the treatment of uterine tumors.2 His successors, the ancient Greek physicians Pedanius Dioscorides (ca. A.D. 40–90) and Soranus of Ephesus (A.D. 98–138) continued using this therapy in the first and second centuries A.D.3,4 In addition, the topical anticancer uses of extracts from this plant5,6 as well as from N. pseudonarcissus7–9 were recorded in the first century A.D. by the Roman natural philosopher Gaius Plinius Secundus, (A.D. 23–79), better known as Pliny the Elder.10 Even the Bible provides multiple references to the Mediterranean N. tazetta L., which has a long history of use against cancer.11 The applications of narcissus oil in cancer management continued in the middle ages in Chinese, North African, Central American and Arabian medicine.1,12 The uses of other genera of the Amaryllidaceae family were also common, e. g. Hymenocallis caribaea (L. emend Gawler) Herbert, utilized by early European medical practitioners for inflammatory tumors.13 More recently, the plants of the Amaryllidaceae have been under intense scrutiny for the presence of the specific metabolites responsible for the medicinal properties associated with this plant family. The study began in 1877 with the isolation of alkaloid lycorine from Narcissus pseudonarcissus14 and since then more than 100 alkaloids, exhibiting diverse biological activities, have been isolated from the Amaryllidaceae plants. Based on the present scientific evidence, it is likely that isocarbostyril constituents of the Amaryllidaceae, such as narciclasine, pancratistatin and their congeners, are the most important metabolites responsible for the therapeutic benefits of these plants in the folk medical treatment of cancer. Notably, N. poeticus L. used by the ancient Greek physicians, as was eluded before, is now known to contain some 0.12 g of narciclasine per kg of fresh bulbs.15 Continuing along this intriguing path, the focus of the present review is a comprehensive literature survey and discussion of the chemistry and biology of these compounds as specifically relevant to their potential use in medicine. The examination of the synthetic organic chemistry, more specifically the total synthesis efforts inspired by the challenging chemical structures of narciclasine, pancratistatin and their congeners, will be reduced to a minimum in view of the two very recent excellent reviews published on this subject.16,17

324 citations

Journal ArticleDOI
TL;DR: It is reported that loss of one copy of Gls blunted tumor progression in an immune-competent MYC-mediated mouse model of hepatocellular carcinoma and small molecule and genetic inhibition of GLS are supported for targeting the tumor cell-autonomous dependence on GLS for cancer therapy.
Abstract: Glutaminase (GLS), which converts glutamine to glutamate, plays a key role in cancer cell metabolism, growth, and proliferation. GLS is being explored as a cancer therapeutic target, but whether GLS inhibitors affect cancer cell–autonomous growth or the host microenvironment or have off-target effects is unknown. Here, we report that loss of one copy of Gls blunted tumor progression in an immune-competent MYC-mediated mouse model of hepatocellular carcinoma. Compared with results in untreated animals with MYC-induced hepatocellular carcinoma, administration of the GLS-specific inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) prolonged survival without any apparent toxicities. BPTES also inhibited growth of a MYC-dependent human B cell lymphoma cell line (P493) by blocking DNA replication, leading to cell death and fragmentation. In mice harboring P493 tumor xenografts, BPTES treatment inhibited tumor cell growth; however, P493 xenografts expressing a BPTES-resistant GLS mutant (GLS-K325A) or overexpressing GLS were not affected by BPTES treatment. Moreover, a customized Vivo-Morpholino that targets human GLS mRNA markedly inhibited P493 xenograft growth without affecting mouse Gls expression. Conversely, a Vivo-Morpholino directed at mouse Gls had no antitumor activity in vivo. Collectively, our studies demonstrate that GLS is required for tumorigenesis and support small molecule and genetic inhibition of GLS as potential approaches for targeting the tumor cell–autonomous dependence on GLS for cancer therapy.

317 citations

Journal ArticleDOI
14 Jul 2016-Oncogene
TL;DR: This review summarizes current findings on the role of glutaminolytic enzymes in human cancers and provides an update on the development of small molecule inhibitors to target glutAMinolysis for cancer therapy.
Abstract: Cancer cells display an altered metabolic circuitry that is directly regulated by oncogenic mutations and loss of tumor suppressors. Mounting evidence indicates that altered glutamine metabolism in cancer cells has critical roles in supporting macromolecule biosynthesis, regulating signaling pathways, and maintaining redox homeostasis, all of which contribute to cancer cell proliferation and survival. Thus, intervention in these metabolic processes could provide novel approaches to improve cancer treatment. This review summarizes current findings on the role of glutaminolytic enzymes in human cancers and provides an update on the development of small molecule inhibitors to target glutaminolysis for cancer therapy.

304 citations