scispace - formally typeset
Search or ask a question
Author

Brigitte d'Andréa-Novel

Bio: Brigitte d'Andréa-Novel is an academic researcher from Mines ParisTech. The author has contributed to research in topics: Lyapunov function & Vehicle dynamics. The author has an hindex of 30, co-authored 111 publications receiving 5040 citations. Previous affiliations of Brigitte d'Andréa-Novel include PSL Research University & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
02 May 1993
TL;DR: The structure of the kinematic and dynamic models of wheeled mobile robots is analyzed and it is shown that, for a large class of possible configurations, they can be classified into five types, characterized by generic structures of the model equations.
Abstract: The structure of the kinematic and dynamic models of wheeled mobile robots is analyzed. It is shown that, for a large class of possible configurations, they can be classified into five types, characterized by generic structures of the model equations. For each type of model the following questions are addressed: (ir)reducibility and (non)holonomy, mobility and controllability, configuration of the motorization, and feedback equivalence.

1,066 citations

Journal ArticleDOI
TL;DR: The problem of tracking with stability of a reference trajectory is solved by means of linearizing "static" and "dynamic" state feedback laws by giving conditions to avoid possible singularities of the feedback laws.
Abstract: We are concerned in this article with the control of wheeled mobile robots, which constitute a class of nonholonomic mechanical systems. More precisely, we are interested in solving the problem of tracking with stability of a reference trajectory, by means of linearizing ''static'' and ''dynamic'' state feedback laws. We give conditions to avoid possible singularities of the feedback laws.

346 citations

Proceedings ArticleDOI
01 Jan 2004
TL;DR: A strict Lyapunov function for hyperbolic systems of conservation laws that can be diagonalized with Riemann invariants that allows to guarantee the local convergence of the state towards a desired set point.
Abstract: We present a strict Lyapunov function for hyperbolic systems of conservation laws that can be diagonalized with Riemann invariants. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions. It is shown that the derived boundary control allows to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state only measured at the boundaries. The control design method is illustrated with an hydraulic application, namely the level and flow regulation in an horizontal open channel

346 citations

Journal ArticleDOI
TL;DR: This article deduces stabilizing control laws for a single horizontal reach without friction for a general class of hyperbolic systems which can describe canal networks with more general topologies by means of a Riemann invariants approach.

290 citations

Journal ArticleDOI
TL;DR: This work gives a new sufficient condition on the boundary conditions for the exponential stability of one-dimensional nonlinear hyperbolic systems on a bounded interval using an explicit strict Lyapunov function.
Abstract: We give a new sufficient condition on the boundary conditions for the exponential stability of one-dimensional nonlinear hyperbolic systems on a bounded interval. Our proof relies on the construction of an explicit strict Lyapunov function. We compare our sufficient condition with other known sufficient conditions for nonlinear and linear one-dimensional hyperbolic systems.

273 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous feedback, which subsumes the physical properties of a linearizing output and provides another nonlinear extension of Kalman's controllability.
Abstract: We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra where flatness- and defect are best defined without distinguishing between input, state, output and other variables. Many realistic classes of examples are flat. We treat two popular ones: the crane and the car with n trailers, the motion planning of which is obtained via elementary properties of plane curves. The three non-flat examples, the simple, double and variable length pendulums, are borrowed from non-linear physics. A high frequency control strategy is proposed such that the averaged systems become flat.

3,025 citations

Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Journal ArticleDOI
TL;DR: This manuscript describes a unique class of locomotive robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals that do not have hard internal skeletons, and illustrates an advantage of soft robotics.
Abstract: This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.

1,716 citations

Journal ArticleDOI
13 Jun 2016
TL;DR: In this article, the authors present a survey of the state of the art on planning and control algorithms with particular regard to the urban environment, along with a discussion of their effectiveness.
Abstract: Self-driving vehicles are a maturing technology with the potential to reshape mobility by enhancing the safety, accessibility, efficiency, and convenience of automotive transportation. Safety-critical tasks that must be executed by a self-driving vehicle include planning of motions through a dynamic environment shared with other vehicles and pedestrians, and their robust executions via feedback control. The objective of this paper is to survey the current state of the art on planning and control algorithms with particular regard to the urban setting. A selection of proposed techniques is reviewed along with a discussion of their effectiveness. The surveyed approaches differ in the vehicle mobility model used, in assumptions on the structure of the environment, and in computational requirements. The side by side comparison presented in this survey helps to gain insight into the strengths and limitations of the reviewed approaches and assists with system level design choices.

1,437 citations

Journal ArticleDOI
TL;DR: Nonholonomic control systems as discussed by the authors provide a good introduction to the subject for nonspecialists in the field, while perhaps providing specialists with a better perspective of the field as a whole.
Abstract: Provides a summary of recent developments in control of nonholonomic systems. The published literature has grown enormously during the last six years, and it is now possible to give a tutorial presentation of many of these developments. The objective of this article is to provide a unified and accessible presentation, placing the various models, problem formulations, approaches, and results into a proper context. It is hoped that this overview will provide a good introduction to the subject for nonspecialists in the field, while perhaps providing specialists with a better perspective of the field as a whole. The paper is organized as follows: introduction to nonholonomic control systems and where they arise in applications, classification of models of nonholonomic control systems, control problem formulations, motion planning results, stabilization results, and current and future research topics.

1,269 citations