scispace - formally typeset
Search or ask a question
Author

Bruce A. Barut

Bio: Bruce A. Barut is an academic researcher from Howard Hughes Medical Institute. The author has contributed to research in topics: Zebrafish & Positional cloning. The author has an hindex of 24, co-authored 33 publications receiving 4587 citations. Previous affiliations of Bruce A. Barut include Boston Children's Hospital & Harvard University.

Papers
More filters
Journal ArticleDOI
17 Feb 2000-Nature
TL;DR: The gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst is identified and Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
Abstract: Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMT1 (refs 1,2,3). A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.

1,553 citations

Journal ArticleDOI
02 Mar 2006-Nature
TL;DR: The data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.
Abstract: Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.

527 citations

Journal ArticleDOI
15 Dec 1993-Blood
TL;DR: The binding of myeloma cells to BMSCs was partially blocked with anti- beta 1 monoclonal antibody (MoAb), anti-beta 2 integrin MoAb, and excess RGD peptide, suggesting multiple mechanisms for the adhesion of myeeloma cell lines to B MSCs.

451 citations

Journal ArticleDOI
18 Aug 2005-Nature
TL;DR: It is shown that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe–S cluster assembly, indicating that haemoglobin production in the differentiating red cell is regulated through Fe– S cluster assembly.
Abstract: Iron is required to produce haem and iron–sulphur (Fe–S) clusters, processes thought to occur independently1,2. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe–S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and mice. Zebrafish grx5 rescued the assembly of Δgrx5 yeast Fe–S, showing that the biochemical function of grx5 is evolutionarily conserved. In contrast to yeast, vertebrates use iron regulatory protein 1 (IRP1) to sense intracellular iron and regulate mRNA stability or the translation of iron metabolism genes1,2. We found that loss of Fe–S cluster assembly in sir animals activated IRP1 and blocked haem biosynthesis catalysed by aminolaevulinate synthase 2 (ALAS2). Overexpression of ALAS2 RNA without the 5′ iron response element that binds IRP1 rescued sir embryos, whereas overexpression of ALAS2 including the iron response element did not. Further, antisense knockdown of IRP1 restored sir embryo haemoglobin synthesis. These findings uncover a connection between haem biosynthesis and Fe–S clusters, indicating that haemoglobin production in the differentiating red cell is regulated through Fe–S cluster assembly.

356 citations

Journal ArticleDOI
15 May 1989-Blood
TL;DR: The heterogeneity in the in vitro responses of myeloma cells and derived cell lines to exogenous growth factors enhances the understanding of abnormal plasma cell growth and may yield insight into the pathophysiology of plasma cell dyscrasias.

218 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work introduces Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner and constitutes a starting point to build pathway-centric models of biology.
Abstract: Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org .

6,125 citations

Journal ArticleDOI
17 Dec 2004-Science
TL;DR: It is reported that hepcidin bound to ferroportin in tissue culture cells, leading to decreased export of cellular iron and the posttranslational regulation of ferroports by hePCidin may complete a homeostatic loop.
Abstract: Hepcidin is a peptide hormone secreted by the liver in response to iron loading and inflammation. Decreased hepcidin leads to tissue iron overload, whereas hepcidin overproduction leads to hypoferremia and the anemia of inflammation. Ferroportin is an iron exporter present on the surface of absorptive enterocytes, macrophages, hepatocytes, and placental cells. Here we report that hepcidin bound to ferroportin in tissue culture cells. After binding, ferroportin was internalized and degraded, leading to decreased export of cellular iron. The posttranslational regulation of ferroportin by hepcidin may thus complete a homeostatic loop: Iron regulates the secretion of hepcidin, which in turn controls the concentration of ferroportin on the cell surface.

4,109 citations

Journal ArticleDOI
TL;DR: The response rate among the patients who received high-dose therapy was 81 percent, whereas it was 57 percent in the group treated with conventional chemotherapy (P<0.001).
Abstract: Background The median survival of patients with myeloma after conventional chemotherapy is three years or less. Promising results have been reported with high-dose therapy supported by autologous bone marrow transplantation. We conducted a randomized study comparing conventional chemotherapy and high-dose therapy. Methods Two hundred previously untreated patients under the age of 65 years who had myeloma were randomly assigned at the time of diagnosis to receive either conventional chemotherapy or high-dose therapy and autologous bone marrow transplantation. Results The response rate among the patients who received high-dose therapy was 81 percent (including complete responses in 22 percent and very good partial responses in 16 percent), whereas it was 57 percent (complete responses in 5 percent and very good partial responses in 9 percent) in the group treated with conventional chemotherapy (P<0.001). The probability of event-free survival for five years was 28 percent in the high-dose group and 10 perce...

2,650 citations

Journal ArticleDOI
TL;DR: Characterization of regulatory regions of adipose-specific genes has led to the identification of the transcription factors peroxisome proliferator-activated receptor-gamma and CCAAT/enhancer binding protein (C/EBP), which play a key role in the complex transcriptional cascade during adipocyte differentiation.
Abstract: Gregoire, Francine M., Cynthia M. Smas, and Hei Sook Sul. Understanding Adipocyte Differentiation. Physiol. Rev. 78: 783–809, 1998. — The adipocyte plays a critical role in energy balance. Adipose tissue growth involves an increase in adipocyte size and the formation of new adipocytes from precursor cells. For the last 20 years, the cellular and molecular mechanisms of adipocyte differentiation have been extensively studied using preadipocyte culture systems. Committed preadipocytes undergo growth arrest and subsequent terminal differentiation into adipocytes. This is accompanied by a dramatic increase in expression of adipocyte genes including adipocyte fatty acid binding protein and lipid-metabolizing enzymes. Characterization of regulatory regions of adipose-specific genes has led to the identification of the transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein (C/EBP), which play a key role in the complex transcriptional cascade during adipocyt...

2,270 citations