scispace - formally typeset
Search or ask a question
Author

Bruce A. Morgan

Bio: Bruce A. Morgan is an academic researcher from Saarland University. The author has contributed to research in topics: Hair follicle & Dermal papillae. The author has an hindex of 48, co-authored 117 publications receiving 10600 citations. Previous affiliations of Bruce A. Morgan include National Institute for Medical Research & German Cancer Research Center.


Papers
More filters
Journal ArticleDOI
16 Dec 1994-Cell
TL;DR: The authors' results indicate that Sonic hedgehog initiates expression of secondary signaling molecules, including Bmp-2 in the mesoderm and Fgf-4 in the ectoderm, which provide a basis for understanding the integration of growth and patterning in the developing limb.

838 citations

Journal ArticleDOI
TL;DR: A comparative study of the developmental patterns of homeobox gene expression and developmental morphology between animals that have homologous regulatory genes but different morphologies, which contributes a mechanistic level to the assumed homology of these regions in vertebrates.
Abstract: Hoxgenes are a family of regulatory genes expressed along the A-P axis in most metazoans. Because homeobox genes encode transcription regulators active in pattern formation during ontogeny, they are obvious factors to study in the investigation of the mechanistic basis for ontogeny, as well as in the relationship between ontogeny and phylogeny. This paper presents a comparative study of the developmental patterns of homeobox gene expression and morphogenesis along the A-P axis between related animals that have homologous regulatory genes but different axial morphologies. The participation of different numbers of segments in any given region of the vertebrate body and the different positions of the appendages relative to the A-P axis, have provoked comment and theory from morphologists for centuries. While common generative rules govern mesodermal segments within individual organisms (serial homology), and common ancestry accounts for their presence in all chordates (historical homology), details of this segmental organization differ dramatically between related organisms resulting in a variety of axial formulae, defined here as the number of vertebrae of each morphological type, e.g. cervical, thoracic, lumbar, etc. In 1906, E. S. Goodrich proposed the term ‘transposition’ to describe evolutionary changes in the number of segments included in any vertebral region. Goodrich surmised that serially and historically homologous regions behave as pliable elements that can slide up or down the A-P axis during evolution. Lankester (1910) expanded the description with a useful musical analogy, comparing an axial structure or region to a tune that can be transposed up or down the scale. The pattern of variation and constraint in axial formulae among different classes of vertebrates demonstrates that transposition has been an important evolutionary phenomenon in the establishment and radiation of different vertebrate groups (Gadow, 1933; Carroll, 1988). Mammals are a vertebrate class with extreme morphological variation. With very few exceptions however, they are constrained by the fixed number of seven cervical vertebrae whether they be whales or giraffes. Birds are not constrained in this character, and vary from 13 (pigeons and swifts), to 25 (swans) cervical vertebrae. Extremes among the vertebrates include the Cretaceous plesiosaur, Elasmosaurussp. which had as many as 76 cervical vertebrae; snakes, with as many as 350 individual vertebrae of equivocal types; and the modern anurans (frogs) with never more than 9 and as few as 6 total presacral vertebrae. Even when the total number of pre-caudal vertebrae is almost the same, as is the case between chickens and mice, the relative length of specific regions, such as cervical versus thoracic, can vary considerably. Members of the Hoxfamily of homeobox genes are expressed along the A-P axis at specific levels in the central

812 citations

Journal ArticleDOI
TL;DR: Using virally mediated misexpression, it is shown that Sonic hedgehog is sufficient to induce ectopic expression of Bmp-4 and specific Hoxd genes within the mesoderm, which appears to act as a signal in an epithelial-mesenchymal interaction in the earliest stages of chick hindgut formation.
Abstract: Reciprocal inductive signals between the endoderm and mesoderm are critical to vertebrate gut development. Sonic hedgehog encodes a secreted protein known to act as an inductive signal in several regions of the developing embryo. In this report, we provide evidence to support the role of Sonic hedgehog and its target genes Bmp-4 and the Abd-B-related Hox genes in the induction and patterning the chick hindgut. Sonic is expressed in the definitive endoderm at the earliest stage of chick gut formation. Immediately subjacent to Sonic expression in the caudal endoderm is undifferentiated mesoderm, later to become the visceral mesoderm of the hindgut. Genes expressed within this tissue include Bmp-4 (a TGF-beta relative implicated in proper growth of visceral mesoderm) and members of the Abd-B class of Hox genes (known regulators of pattern in many aspects of development). Using virally mediated misexpression, we show that Sonic hedgehog is sufficient to induce ectopic expression of Bmp-4 and specific Hoxd genes within the mesoderm. Sonic therefore appears to act as a signal in an epithelial-mesenchymal interaction in the earliest stages of chick hindgut formation. Gut pattern is evidenced later in gut morphogenesis with the presence of anatomic boundaries reflecting phenotypically and physiologically distinct regions. The expression pattern of the Abd-b-like Hox genes remains restricted in the hindgut and these Hox expression domains reflect gut morphologic boundaries. This finding strongly supports a role for these genes in determining the adult gut phenotype. Our results provide the basis for a model to describe molecular controls of early vertebrate hindgut development and patterning. Expression of homologous genes in Drosophila suggest that aspects of gut morphogenesis may be regulated by similar inductive networks in the two organisms.

558 citations

Journal ArticleDOI
TL;DR: Comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes.
Abstract: The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3' genes are expressed in the fore limb bud while the 5' genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.

508 citations

Journal ArticleDOI
TL;DR: It is demonstrated that specific Wnts, but not Sonic hedgehog (Shh), maintain anagen-phase gene expression in vitro and hair inductive activity in a skin reconstitution assay.
Abstract: The formation of the hair follicle and its cyclical growth, quiescence, and regeneration depend on reciprocal signaling between its epidermal and dermal components. The dermal organizing center, the dermal papilla (DP), regulates development of the epidermal follicle and is dependent on signals from the epidermis for its development and maintenance. GFP specifically expressed in DP cells of a transgenic mouse was used to purify this population and study the signals required to maintain it. We demonstrate that specific Wnts, but not Sonic hedgehog (Shh), maintain anagen-phase gene expression in vitro and hair inductive activity in a skin reconstitution assay.

490 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: The transcriptional landscape of the four human HOX loci is characterized at five base pair resolution in 11 anatomic sites and 231 HOX ncRNAs are identified that extend known transcribed regions by more than 30 kilobases, suggesting transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance.

4,003 citations

Journal ArticleDOI
TL;DR: Detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins, which consists of two conserved components, a histidine protein kinase and a response regulator protein.
Abstract: ▪ Abstract Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regul...

3,406 citations

Journal ArticleDOI
25 Oct 2002-Science
TL;DR: This work determines how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells, and identifies network motifs, the simplest units of network architecture, and demonstrates that an automated process can use motifs to assemble a transcriptional regulatory network structure.
Abstract: We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiaeassociate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.

3,127 citations

Journal ArticleDOI
TL;DR: In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment.
Abstract: Since their isolation in the early 1990s, members of the Hedgehog family of intercellular signaling proteins have come to be recognized as key mediators of many fundamental processes in embryonic development. Their activities are central to the growth, patterning, and morphogenesis of many different regions within the body plans of vertebrates and insects, and most likely other invertebrates. In some contexts, Hedgehog signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens regulating cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hedgehog proteins raise many intriguing questions about their mode of operation. How do these proteins move between or across fields of cells? How are their activities modulated and transduced? What are their intracellular targets? In this article we review some well-established paradigms of Hedgehog function inDrosophila and vertebrate development and survey the current understanding of the synthesis, modification, and transduction of Hedgehog proteins. Embryological studies over much of the last century that relied primarily on the physical manipulation of cells within the developing embryo or fragments of the embryo in culture, provided many compelling examples for the primacy of cell–cell interactions in regulating invertebrate and vertebrate development. The subsequent identification of many of the signaling factors that mediate cellular communication has led to two general conclusions. First, although there are many important signals, most of these fall into a few large families of secreted peptide factors: theWnt (Wodarz and Nusse 1998), fibroblast growth factor (Szebenyi and Fallon 1999), TGFsuperfamily (Massague and Chen 2000), plateletderived growth factor (Betsholtz et al. 2001), ephrin (Bruckner and Klein 1998), and Hedgehog families. Second, parallel studies in invertebrate and vertebrate systems have shown that although the final outcome might look quite different (e.g., a fly vs. a mouse), there is a striking conservation in the deployment of members of the same signaling families to regulate development of these seemingly quite different organisms. This review focuses on one of the most intriguing examples of this phenomenon, that of the Hedgehog family. As with many of the advances in our understanding of the genetic regulation of animal development, hedgehog (hh) genes owe their discovery to the pioneering work of Nusslein-Volhard and Wieschaus (1980). In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles (spiky cuticular processes that decorate the anterior half of each body segment) and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment (see Fig. 1). The ensuing appearance of a continuous lawn of denticles projecting from the larval cuticle evidently suggested the spines of a hedgehog to the discoverers, hence the origin of the name of one of these genes. Other loci identified by mutants with this phenotype included armadillo, gooseberry, and wingless (wg). In contrast, animals mutant for the aptly named naked gene showed the converse phenotype, with denticle belts replaced by naked cuticle in every segment. On the basis of these mutant phenotypes, Nusslein-Volhard and Wieschaus (1980) proposed that these so-called segment-polarity genes regulate pattern within each of the segments of the larval body, individual genes acting within distinct subregions of the emerging segmental pattern. The first important breakthrough in unraveling how segment-polarity genes act came in the mid-1980s with the cloning of two members of the class, wingless and engrailed (en). Wg was shown to be the ortholog of the vertebrate proto-oncogene int1 (subsequently renamed Wnt1 and the founder member of the Wnt family of secreted peptide factors; Rijsewijk et al. 1987), whereas the sequence of en revealed that it encodes a homeodomaincontaining transcription factor (Fjose et al. 1985; Poole et al. 1985). Intriguingly, the two genes were found to be expressed in adjacent narrow stripes of cells in each segment (Martinez Arias et al. 1988). A close spatial relationship between Wnt1 and En expression domains was also reported in the primordial midbrain and hindbrain of the vertebrate embryo (McMahon et al. 1992). AnalyWe dedicate this review to the memory of our dear friend and colleague Rosa Beddington, whose encouragement led to our initial collaboration. 3Corresponding authors. E-MAIL p.w.ingham@sheffield.ac.uk; FAX 0114-222-288. E-MAIL amcmahon@biosun.harvard.edu; FAX (617) 496-3763. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ gad.938601.

2,919 citations