scispace - formally typeset
Search or ask a question
Author

Bruce C. Gates

Bio: Bruce C. Gates is an academic researcher from University of California, Davis. The author has contributed to research in topics: Catalysis & Extended X-ray absorption fine structure. The author has an hindex of 81, co-authored 627 publications receiving 26008 citations. Previous affiliations of Bruce C. Gates include University of Southern California & University of Delaware.


Papers
More filters
Journal ArticleDOI
TL;DR: A critical review of the literature of catalytic hydroprocessing reactions can be found in this article, where the authors present thermodynamic, reactivity, reaction network and kinetic data of hydrogenation of aromatic hydrocarbons, hydrodesulfurization, hydrodenitrogenation and hydrodeoxygenation.
Abstract: Critical review of the literature of catalytic hydroprocessing reactions. Presentation of thermodynamic, reactivity, reaction network and kinetic data of hydrogenation of aromatic hydrocarbons, hydrodesulfurization, hydrodenitrogenation and hydrodeoxygenation

856 citations

Journal ArticleDOI
TL;DR: In this article, a review of catalytic hydrodeoxygenation (HDO) reactions on compounds derived from lignin is presented, with a comparison of catalysts addressing their activities, selectivities, and stabilities.
Abstract: The incentive for use of renewable resources to replace fossil sources is motivating extensive research on new and alternative fuels derived from biomass. Bio-oils derived from cellulosic biomass offer the prospect of becoming a major feedstock for production of fuels and chemicals, and lignin is a plentiful, underutilized component of cellulosic biomass. Lignin conversion requires depolymerization and removal of oxygen. Likely processes for lignin conversion involve depolymerization (e.g., by pyrolysis) and catalytic upgrading of the resultant bio-oils. A major goal of the upgrading is catalytic hydrodeoxygenation (HDO), which involves reactions with hydrogen that produce hydrocarbons and water. The aim of this review is to present a critical introduction to HDO chemistry focused on compounds derived from lignin, including a summary of HDO reactions and those that accompany them, with a comparison of catalysts addressing their activities, selectivities, and stabilities. The reactions are evaluated in terms of reaction pathways of compounds representative of lignin-derived bio-oils, including anisole, guaiacol, and phenol. The review includes recommendations for further research and an attempt to place HDO in a context of options for renewable fuels and chemicals, but it does not provide an economic assessment.

741 citations

Journal ArticleDOI
TL;DR: In this paper, the advantages and limitations of MOFs as catalysts are summarized and fundamental issues to be addressed about their potential applications, including shape-selective and bifunctional catalysis, and quantifying reaction/transport processes in MOFs, identifying catalytic sites, and determining intrinsic catalytic reaction rates.
Abstract: Metal organic frameworks (MOFs) have drawn wide attention as potential catalysts, offering high densities of catalytic sites in high-area porous solids, some with stabilities at high temperatures. The field is at an early stage, characterized by numerous discoveries and novel demonstrations of catalytic properties associated with the crystalline structures of MOFs, but applications of MOFs as catalysts are still lacking. In this perspective we summarize advantages and limitations of MOFs as catalysts and fundamental issues to be addressed about their potential applications. MOF framework compositions and pore structures can strongly influence catalytic performance, allowing, for example, shape-selective and bifunctional catalysis, but research is needed to quantify reaction/transport processes in MOFs, identify catalytic sites, and determine intrinsic catalytic reaction rates. Progress is hindered by the lack of understanding of the heterogeneity of MOFs, with catalytic sites sometimes being in structures...

529 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: Corma et al. as mentioned in this paper used the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) on technology research (1996), to recognize the performance of zeolites as catalysts for oil refining and petrochemistry.
Abstract: It is possible to say that zeolites are the most widely used catalysts in industry They are crystalline microporous materials which have become extremely successful as catalysts for oil refining, petrochemistry, and organic synthesis in the production of fine and speciality chemicals, particularly when dealing with molecules having kinetic diameters below 10 A The reason for their success in catalysis is related to the following specific features of these materials:1 (1) They have very high surface area and adsorption capacity (2) The adsorption properties of the zeolites can be controlled, and they can be varied from hydrophobic to hydrophilic type materials (3) Active sites, such as acid sites for instance, can be generated in the framework and their strength and concentration can be tailored for a particular application (4) The sizes of their channels and cavities are in the range typical for many molecules of interest (5-12 A), and the strong electric fields2 existing in those micropores together with an electronic confinement of the guest molecules3 are responsible for a preactivation of the reactants (5) Their intricate channel structure allows the zeolites to present different types of shape selectivity, ie, product, reactant, and transition state, which can be used to direct a given catalytic reaction toward the desired product avoiding undesired side reactions (6) All of these properties of zeolites, which are of paramount importance in catalysis and make them attractive choices for the types of processes listed above, are ultimately dependent on the thermal and hydrothermal stability of these materials In the case of zeolites, they can be activated to produce very stable materials not just resistant to heat and steam but also to chemical attacks Avelino Corma Canos was born in Moncofar, Spain, in 1951 He studied chemistry at the Universidad de Valencia (1967−1973) and received his PhD at the Universidad Complutense de Madrid in 1976 He became director of the Instituto de Tecnologia Quimica (UPV-CSIC) at the Universidad Politecnica de Valencia in 1990 His current research field is zeolites as catalysts, covering aspects of synthesis, characterization and reactivity in acid−base and redox catalysis A Corma has written about 250 articles on these subjects in international journals, three books, and a number of reviews and book chapters He is a member of the Editorial Board of Zeolites, Catalysis Review Science and Engineering, Catalysis Letters, Applied Catalysis, Journal of Molecular Catalysis, Research Trends, CaTTech, and Journal of the Chemical Society, Chemical Communications A Corma is coauthor of 20 patents, five of them being for commercial applications He has been awarded with the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) 2373 Chem Rev 1997, 97, 2373−2419

5,290 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
Abstract: Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H-2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.

4,446 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations