scispace - formally typeset
Search or ask a question
Author

Bruce E. Johnson

Other affiliations: University of Adelaide, Virginia Tech, Dana Corporation  ...read more
Bio: Bruce E. Johnson is an academic researcher from Harvard University. The author has contributed to research in topics: Lung cancer & Cancer. The author has an hindex of 104, co-authored 474 publications receiving 68801 citations. Previous affiliations of Bruce E. Johnson include University of Adelaide & Virginia Tech.
Topics: Lung cancer, Cancer, Erlotinib, Gefitinib, Medicine


Papers
More filters
Journal ArticleDOI
04 Jun 2004-Science
TL;DR: Results suggest that EGFR mutations may predict sensitivity to gefitinib, and treatment with the EGFR kinase inhibitor gefitsinib causes tumor regression in some patients with NSCLC, more frequently in Japan.
Abstract: Receptor tyrosine kinase genes were sequenced in nonsmall cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15 of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinibinsensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib. Protein kinase activation by somatic mutation or

9,265 citations

Journal ArticleDOI
18 May 2007-Science
TL;DR: It is proposed that MET amplification may promote drug resistance in other ERBB-driven cancers as well after it was found that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors.
Abstract: The epidermal growth factor receptor (EGFR) kinase inhibitors gefitinib and erlotinib are effective treatments for lung cancers with EGFR activating mutations, but these tumors invariably develop drug resistance. Here, we describe a gefitinib-sensitive lung cancer cell line that developed resistance to gefitinib as a result of focal amplification of the MET proto-oncogene. inhibition of MET signaling in these cells restored their sensitivity to gefitinib. MET amplification was detected in 4 of 18 (22%) lung cancer specimens that had developed resistance to gefitinib or erlotinib. We find that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors. Thus, we propose that MET amplification may promote drug resistance in other ERBB-driven cancers as well.

4,218 citations

Journal ArticleDOI
TL;DR: This new adenocarcinoma classification is needed to provide uniform terminology and diagnostic criteria, especially for bronchioloalveolar carcinoma (BAC), the overall approach to small nonresection cancer specimens, and for multidisciplinary strategic management of tissue for molecular and immunohistochemical studies.

3,850 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the case of a patient with EGFR-mutant, gefitinib-responsive, advanced non-small-cell lung cancer who had a relapse after two years of complete remission.
Abstract: Mutations of the epidermal growth factor receptor (EGFR) gene have been identified in specimens from patients with non-small-cell lung cancer who have a response to anilinoquinazoline EGFR inhibitors. Despite the dramatic responses to such inhibitors, most patients ultimately have a relapse. The mechanism of the drug resistance is unknown. Here we report the case of a patient with EGFR-mutant, gefitinib-responsive, advanced non-small-cell lung cancer who had a relapse after two years of complete remission during treatment with gefitinib. The DNA sequence of the EGFR gene in his tumor biopsy specimen at relapse revealed the presence of a second point mutation, resulting in threonine-to-methionine amino acid change at position 790 of EGFR. Structural modeling and biochemical studies showed that this second mutation led to gefitinib resistance.

3,812 citations

Journal ArticleDOI
Peter S. Hammerman1, Doug Voet1, Michael S. Lawrence1, Douglas Voet1  +342 moreInstitutions (32)
27 Sep 2012-Nature
TL;DR: It is shown that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour.
Abstract: Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours, offering new avenues of investigation for the treatment of squamous cell lung cancers.

3,356 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Jun 1990-Cell
TL;DR: A model for the genetic basis of colorectal neoplasia that includes the following salient features is presented, which may be applicable to other common epithelial neoplasms, in which tumors of varying stage are more difficult to study.

11,576 citations

Journal ArticleDOI
TL;DR: A practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics, which makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries.
Abstract: The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.

10,947 citations