scispace - formally typeset
Search or ask a question
Author

Bruce J. Bourque

Other affiliations: Bates College
Bio: Bruce J. Bourque is an academic researcher from Maine State Museum. The author has contributed to research in topics: Marine ecosystem & Kelp forest. The author has an hindex of 11, co-authored 19 publications receiving 9356 citations. Previous affiliations of Bruce J. Bourque include Bates College.

Papers
More filters
Journal ArticleDOI
27 Jul 2001-Science
TL;DR: Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of over-fished species until they too were overfished or died of epidemic diseases related to overcrowding as mentioned in this paper.
Abstract: Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

5,411 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted >90% of formerly important species, destroyed >65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions.
Abstract: Estuarine and coastal transformation is as old as civilization yet has dramatically accelerated over the past 150 to 300 years. Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted >90% of formerly important species, destroyed >65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions. Twentieth-century conservation efforts achieved partial recovery of upper trophic levels but have so far failed to restore former ecosystem structure and function. Our results provide detailed historical baselines and quantitative targets for ecosystem-based management and marine conservation.

2,795 citations

Journal ArticleDOI
TL;DR: The conditions in which kelp forests develop globally and where, why and at what rate they become deforested are reviewed and overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon.
Abstract: Kelp forests are phyletically diverse, structurally complex and highly productive components of coldwater rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40–60° latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2–3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The large-scale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.

1,583 citations

Journal ArticleDOI
TL;DR: The role of kelp forests in facilitating the movement of maritime peoples from Asia to the Americas near the end of the Pleistocene is discussed in this paper, where a collaborative effort between archaeologists and marine ecologists is described.
Abstract: In this article, a collaborative effort between archaeologists and marine ecologists, we discuss the role kelp forest ecosystems may have played in facilitating the movement of maritime peoples from Asia to the Americas near the end of the Pleistocene. Growing in cool nearshore waters along rocky coastlines, kelp forests offer some of the most productive habitats on earth, with high primary productivity, magnified secondary productivity, and three-dimensional habitat supporting a diverse array of marine organisms. Today, extensive kelp forests are found around the North Pacific from Japan to Baja California. After a break in the tropics—where nearshore mangrove forests and coral reefs are highly productive—kelp forests are also found along the Andean Coast of South America. These Pacific Rim kelp forests support or shelter a wealth of shellfish, fish, marine mammals, seabirds, and seaweeds, resources heavily used historically by coastal peoples. By about 16,000 years ago, the North Pacific Coast ...

249 citations

Book
01 Jan 2001
TL;DR: Twelve Thousand Years: American Indians in Maine as mentioned in this paper documents the generations of Native peoples who for twelve millennia have moved through and eventually settled along the rocky coast, rivers, lakes, valleys, and mountains of a region now known as Maine.
Abstract: Twelve Thousand Years: American Indians in Maine documents the generations of Native peoples who for twelve millennia have moved through and eventually settled along the rocky coast, rivers, lakes, valleys, and mountains of a region now known as Maine. Arriving first to this area were Paleo-Indian peoples, followed by maritime hunters, more immigrants, then a revival of maritime cultures. Beginning in the sixteenth century, Native peoples in northern New England became tangled in the far-reaching affairs of European explorers and colonists. Twelve Thousand Years reveals how Penobscots, Abenakis, Passamaquoddies, Maliseets, Micmacs, and other Native communities both strategically accommodated and overtly resisted European and American encroachments. Since that time, Native communities in Maine have endured, adapted when necessary, and experienced a political and cultural revitalization in recent decades.

52 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
27 Jul 2001-Science
TL;DR: Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of over-fished species until they too were overfished or died of epidemic diseases related to overcrowding as mentioned in this paper.
Abstract: Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

5,411 citations

Journal ArticleDOI
15 Feb 2008-Science
TL;DR: This article developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems and found that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers.
Abstract: The management and conservation of the world's oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.

5,365 citations

Journal ArticleDOI
TL;DR: The resilience perspective is increasingly used as an approach for understanding the dynamics of social-ecological systems as mentioned in this paper, which emphasizes non-linear dynamics, thresholds, uncertainty and surprise, how periods of gradual change interplay with periods of rapid change and how such dynamics interact across temporal and spatial scales.
Abstract: The resilience perspective is increasingly used as an approach for understanding the dynamics of social–ecological systems. This article presents the origin of the resilience perspective and provides an overview of its development to date. With roots in one branch of ecology and the discovery of multiple basins of attraction in ecosystems in the 1960–1970s, it inspired social and environmental scientists to challenge the dominant stable equilibrium view. The resilience approach emphasizes non-linear dynamics, thresholds, uncertainty and surprise, how periods of gradual change interplay with periods of rapid change and how such dynamics interact across temporal and spatial scales. The history was dominated by empirical observations of ecosystem dynamics interpreted in mathematical models, developing into the adaptive management approach for responding to ecosystem change. Serious attempts to integrate the social dimension is currently taking place in resilience work reflected in the large numbers of sciences involved in explorative studies and new discoveries of linked social–ecological systems. Recent advances include understanding of social processes like, social learning and social memory, mental models and knowledge–system integration, visioning and scenario building, leadership, agents and actor groups, social networks, institutional and organizational inertia and change, adaptive capacity, transformability and systems of adaptive governance that allow for management of essential ecosystem services.

4,899 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the social dimension that enables adaptive ecosystem-based management, focusing on experiences of adaptive governance of social-ecological systems during periods of abrupt change and investigates social sources of renewal and reorganization.
Abstract: ▪ Abstract We explore the social dimension that enables adaptive ecosystem-based management. The review concentrates on experiences of adaptive governance of social-ecological systems during periods of abrupt change (crisis) and investigates social sources of renewal and reorganization. Such governance connects individuals, organizations, agencies, and institutions at multiple organizational levels. Key persons provide leadership, trust, vision, meaning, and they help transform management organizations toward a learning environment. Adaptive governance systems often self-organize as social networks with teams and actor groups that draw on various knowledge systems and experiences for the development of a common understanding and policies. The emergence of “bridging organizations” seem to lower the costs of collaboration and conflict resolution, and enabling legislation and governmental policies can support self-organization while framing creativity for adaptive comanagement efforts. A resilient social-eco...

4,495 citations