scispace - formally typeset
Search or ask a question
Author

Bruce Kelly

Bio: Bruce Kelly is an academic researcher. The author has contributed to research in topics: Parabolic trough & Thermal energy storage. The author has an hindex of 10, co-authored 12 publications receiving 1507 citations.

Papers
More filters
Journal ArticleDOI
01 Apr 2004-Energy
TL;DR: In this article, an engineering study was carried out to evaluate a concept where another (less expensive) liquid medium such as molten salt is utilized as storage medium rather than the heat transfer fluid (HTF) itself.

543 citations

Journal ArticleDOI
TL;DR: In this paper, the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost was investigated.
Abstract: An evaluation was carried out to investigate the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost. The operating SEGS (Solar Electric Generating Systems located in Mojave Desert, California) plants currently use a high temperature synthetic oil consisting of a eutectic mixture of biphenyl/ diphenyl oxide. The scope of this investigation included examination of known critical issues, postulating solutions or possible approaches where potential problems exist, and the quantification of performance and electricity cost using preliminary cost inputs. The two leading candidates were the so-called solar salt (a binary salt consisting of 60% NaNO 3 and 40% KNO 3 ) and a salt sold commercially as HitecXL (a ternary salt consisting of 48% Ca(NO 3 ) 2 , 7% NaNO 3 , and 45% KNO 3 ). Assuming a two-tank storage system and a maximum operation temperature of 450°C, the evaluation showed that the levelized electricity cost can be reduced by 14.2% compared to a state-of-the-art parabolic trough plant such as the SEGS plants. If higher temperatures are possible, the improvement may be as high as 17.6%. Thermocline salt storage systems offer even greater benefits.

413 citations

Journal ArticleDOI
01 Apr 2004-Energy
TL;DR: In this paper, the feasibility of utilizing a molten salt as the heat transfer fluid (HTF) and for thermal storage in a parabolic trough solar field to improve system performance and to reduce the levelized electricity cost was investigated.

261 citations

Journal ArticleDOI
01 Apr 2004-Energy
TL;DR: In this paper, the results of a collaborative effort under the International Energy Agency SolarPACES organization to address these questions and it shows the potential environmental and economic benefits of each configuration.

227 citations

Proceedings ArticleDOI
21 Apr 2001
TL;DR: In this paper, the authors investigated the most efficient use of solar thermal energy is the production of high pressure saturated steam for addition to the heat recovery steam generator in an integrated plant.
Abstract: The integrated solar plant concept was initially proposed by Luz Solar International [1] as a means of integrating a parabolic trough solar plant with modern combined cycle power plants. An integrated plant consists of a conventional combined cycle plant, a solar collector field, and a solar steam generator. During sunny periods, feedwater is withdrawn from the combined cycle plant heat recovery steam generator, and converted to saturated steam in the solar steam generator. The saturated steam is returned to the heat recovery steam generator, and the combined fossil and solar steam flows are superheated in the heat recovery steam generator. The increased steam flow rate provides an increase in the output of the Rankine cycle. During cloudy periods and at night, the integrated plant operates as a conventional combined cycle facility. Two studies on integrated plant designs using a General Electric Frame 7(FA) gas turbine and a three pressure heat recovery steam generator are currently being conducted by the authors. Preliminary results include the following items: 1) the most efficient use of solar thermal energy is the production of high pressure saturated steam for addition to the heat recovery steam generator; 2) the quantity of high pressure steam generation duty which can be transferred from the heat recovery steam generator to the solar steam generator is limited; thus, the maximum practical solar contribution is also reasonably well defined; 3) small annual solar thermal contributions to an integrated plant can be converted to electric energy at a higher efficiency than a solar-only parabolic trough plant, and can also raise the overall thermal-to-electric conversion efficiency in the Rankine cycle; and 4) annual solar contributions up to 12 percent in an integrated plant should offer economic advantages over a conve ntional solar-only parabolic trough power plant.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the different storage concepts are reviewed and classified, and modellization of such systems is reviewed, and all materials considered in literature or plants are listed. But only a few plants in the world have tested high temperature thermal energy storage systems.
Abstract: Concentrated solar thermal power generation is becoming a very attractive renewable energy production system among all the different renewable options, as it has have a better potential for dispatchability. This dispatchability is inevitably linked with an efficient and cost-effective thermal storage system. Thus, of all components, thermal storage is a key one. However, it is also one of the less developed. Only a few plants in the world have tested high temperature thermal energy storage systems. In this paper, the different storage concepts are reviewed and classified. All materials considered in literature or plants are listed. And finally, modellization of such systems is reviewed.

1,445 citations

Journal ArticleDOI
TL;DR: In this article, a review of thermal energy storage system design methodologies and the factors to be considered at different hierarchical levels for concentrating solar power (CSP) plants is presented.

1,031 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art in investigations and developments of high-temperature phase change materials perspective for storage thermal and a solar energy in the range of temperatures from 120 to 1000 °C.
Abstract: The development of energy saving technologies is very actual issue of present day. One of perspective directions in developing these technologies is the thermal energy storage in various industry branches. The review considers the modern state of art in investigations and developments of high-temperature phase change materials perspective for storage thermal and a solar energy in the range of temperatures from 120 to 1000 °C. The considerable quantity of mixes and compositions on the basis of fluorides, chlorides, hydroxides, nitrates, carbonates, vanadates, molybdates and other salts, and also metal alloys is given. Thermophysical properties of potential heat storage salt compositions and metal alloys are presented. Compatibility of heat storage materials (HSM) and constructional materials have found its reflection in the present work. Data on long-term characteristics of some HSMs in the course of repeated cycles of fusion and solidification are analyzed. Article considers also other problems which should be solved for creation of commercial high-temperature heat storage devices with use of phase change materials.

933 citations

Journal ArticleDOI
TL;DR: An overview of the parabolic-trough collectors that have been built and marketed during the past century, as well as the prototypes currently under development can be found in this paper.
Abstract: This paper presents an overview of the parabolic-trough collectors that have been built and marketed during the past century, as well as the prototypes currently under development. It also presents a survey of systems which could incorporate this type of concentrating solar system to supply thermal energy up to 400 °C, especially steam power cycles for electricity generation, including examples of each application.

915 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the current state of the art of parabolic trough solar power technology and describe the R&D efforts that are in progress to enhance this technology.
Abstract: Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. These plants, developed by Luz International Limited and referred to as Solar Electric Generating Systems (SEGS), range in size from 14-80 MW and represent 354 MW of installed electric generating capacity. More than 2,000,000 m 2 of parabolic trough collector technology has been operating daily for up to 18 years, and as the year 2001 ended, these plants had accumulated 127 years of operational experience. The Luz collector technology has demonstrated its ability to operate in a commercial power plant environment like no other solar technology in the world. Although no new plants have been built since 1990, significant advancements in collector and plant design have been made possible by the efforts of the SEGS plants operators, the parabolic trough industry, and solar research laboratories around the world. This paper reviews the current state of the art of parabolic trough solar power technology and describes the R&D efforts that are in progress to enhance this technology. The paper also shows how the economics of future parabolic trough solar power plants are expected to improve.

762 citations