scispace - formally typeset
Search or ask a question
Author

Bruce Lipschultz

Bio: Bruce Lipschultz is an academic researcher from University of York. The author has contributed to research in topics: Divertor & Alcator C-Mod. The author has an hindex of 56, co-authored 341 publications receiving 13013 citations. Previous affiliations of Bruce Lipschultz include Oak Ridge National Laboratory & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER and compare their predictions with the new experimental results.
Abstract: Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137–2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are energy transport in the scrape-off layer (SOL) in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main-chamber material elements, edge localized mode (ELM) energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low- and high-Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma–materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas: refinement in the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral–neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma–materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed.

943 citations

Journal ArticleDOI
TL;DR: In this paper, different aspects of the PWI are assessed in their importance for the initial wall materials choice: CFC for the strike point tiles, W in the divertor and baffle and Be on the first wall.

708 citations

Journal ArticleDOI
TL;DR: The progress in the ITER Physics Basis (PIPB) document as discussed by the authors is an update of the IPB, which was published in 1999 [1], and provides methodologies for projecting the performance of burning plasmas, developed largely through coordinated experimental, modelling and theoretical activities carried out on today's large tokamaks (ITER Physics R&D).
Abstract: The 'Progress in the ITER Physics Basis' (PIPB) document is an update of the 'ITER Physics Basis' (IPB), which was published in 1999 [1]. The IPB provided methodologies for projecting the performance of burning plasmas, developed largely through coordinated experimental, modelling and theoretical activities carried out on today's large tokamaks (ITER Physics R&D). In the IPB, projections for ITER (1998 Design) were also presented. The IPB also pointed out some outstanding issues. These issues have been addressed by the Participant Teams of ITER (the European Union, Japan, Russia and the USA), for which International Tokamak Physics Activities (ITPA) provided a forum of scientists, focusing on open issues pointed out in the IPB. The new methodologies of projection and control are applied to ITER, which was redesigned under revised technical objectives. These analyses suggest that the achievement of Q > 10 in the inductive operation is feasible. Further, improved confinement and beta observed with low shear (= high βp = 'hybrid') operation scenarios, if achieved in ITER, could provide attractive scenarios with high Q (> 10), long pulse (>1000 s) operation with beta

706 citations

Journal ArticleDOI
TL;DR: Early operation of the Alcator C-MOD tokamak [I.H. Hutchinson et al., 1990] is surveyed and the edge plasma shows a wealth of marfe-like phenomena, including a transition to detachment from the divertor plates with accompanying radiative divertor regions.
Abstract: Early operation of the Alcator‐C‐MOD tokamak [I.H. Hutchinson, Proceedings of IEEE 13th Symposium on Fusion Engineering, Knoxville, TN, edited by M. Lubell, M. Nestor, and S. Vaughan (Institute of Electrical and Electronic Engineers, New York, 1990), Vol. 1, p. 13] is surveyed. Reliable operation, with plasma current up to 1 MA, has been obtained, despite the massive conducting superstructure and the associated error fields. However, vertical disruptions are not slowed by the long vessel time constant. With pellet fueling, peak densities up to 9×1020 m−3 have been attained and ‘‘snakes’’ are often seen. Initial characterization of divertor and scrape‐off layer is presented and indicates approximately Bohm diffusion. The edge plasma shows a wealth of marfe‐like phenomena, including a transition to detachment from the divertor plates with accompanying radiative divertor regions. Energy confinement generally appears to exceed the expectations of neo‐Alcator scaling. A transition to Ohmic H mode has been observed. Ion cyclotron heating experiments have demonstrated good power coupling, in agreement with theory.

391 citations

Journal ArticleDOI
TL;DR: In this paper, a tokamak edge phenomenon, dubbed the "marfe" (for multifaceted asymmetric radiation from the edge), is described, which is characterized by greatly increased radiation, density and density fluctuations, and decreased temperature in a relatively small volume at the inner major radius edge of the plasma.
Abstract: A tokamak edge phenomenon, dubbed the 'marfe' (for multifaceted asymmetric radiation from the edge), is described. This phenomenon, observed in medium- to high-density Alcator C discharges, is characterized by greatly increased radiation, density and density fluctuations, and decreased temperature in a relatively small volume at the inner major radius edge of the plasma. The marfe appears to be confined to minor radii greater than or of the order of that of the limiter. The affected region is typically above the midplane, extending poloidally for about 30° and toroidally for 360°. The temperature and density of the core plasma are unaffected by the marfe. A simple transport model is used to show that the marfe is the manifestation of a thermal instability, with impurity radiation being the main energy loss mechanism out of the marfe volume. A density threshold nm for marfe onset is observed; nm is found to be an increasing function of plasma current and a decreasing function of intrinsic low-Z impurity levels. Detailed observations from spectroscopy, bolometry, Langmuir probe measurements, interferometry and CO2 scattering are presented.

281 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Jan 2011

2,117 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to present the reader with a perspective on how JFNK may be applicable to applications of interest and to provide sources of further practical information.

1,803 citations

Book
01 Dec 1988
TL;DR: In this paper, the spectral energy distribution of the reflected light from an object made of a specific real material is obtained and a procedure for accurately reproducing the color associated with the spectrum is discussed.
Abstract: This paper presents a new reflectance model for rendering computer synthesized images. The model accounts for the relative brightness of different materials and light sources in the same scene. It describes the directional distribution of the reflected light and a color shift that occurs as the reflectance changes with incidence angle. The paper presents a method for obtaining the spectral energy distribution of the light reflected from an object made of a specific real material and discusses a procedure for accurately reproducing the color associated with the spectral energy distribution. The model is applied to the simulation of a metal and a plastic.

1,401 citations