scispace - formally typeset
Search or ask a question

Showing papers by "Bruce M. Spiegelman published in 1995"


Journal ArticleDOI
TL;DR: A role for the abnormal regulation of this cytokine in the pathogenesis of obesity-related insulin resistance is suggested as well as the effects of weight reduction by dietary treatment of obesity on the adipose expression of TNF-alpha mRNA.
Abstract: Obesity is frequently associated with insulin resistance and abnormal glucose homeostasis. Recent studies in animal models have indicated that TNF-alpha plays an important role in mediating the insulin resistance of obesity through its overexpression in fat tissue. However, the mechanisms linking obesity to insulin resistance and diabetes in humans remain largely unknown. In this study we examined the expression pattern of TNF-alpha mRNA in adipose tissues from 18 control and 19 obese premenopausal women by Northern blot analysis. TNF-alpha protein concentrations in plasma and in conditioned medium of explanted adipose tissue were measured by ELISA. Furthermore, the effects of weight reduction by dietary treatment of obesity on the adipose expression of TNF-alpha mRNA were also analyzed in nine premenopausal obese women, before and after a controlled weight-reduction program. These studies demonstrated that obese individuals express 2.5-fold more TNF-alpha mRNA in fat tissue relative to the lean controls (P < 0.001). Similar increases were also observed in adipose production of TNF-alpha protein but circulating TNF-alpha levels were extremely low or undetectable. A strong positive correlation was observed between TNF-alpha mRNA expression levels in fat tissue and the level of hyperinsulinemia (P < 0.001), an indirect measure of insulin resistance. Finally, body weight reduction in obese subjects which resulted in improved insulin sensitivity was also associated with a decrease in TNF-alpha mRNA expression (45%, P < 0.001) in fat tissue. These results suggest a role for the abnormal regulation of this cytokine in the pathogenesis of obesity-related insulin resistance.

3,499 citations


Journal ArticleDOI
01 Dec 1995-Cell
TL;DR: A pivotal role is suggested for PPARγ and its endogenous ligand in adipocyte development and glucose homeostasis and as a target for intervention in metabolic disorders.

2,809 citations


Journal ArticleDOI
TL;DR: The results demonstrate that a developmental switch between these two related but highly specialized cell types can be controlled by the expression of key adipogenic transcription factors.
Abstract: Skeletal muscle and adipose tissue development often has a reciprocal relationship in vivo, particularly in myodystrophic states. We have investigated whether determined myoblasts with no inherent adipogenic potential can be induced to transdifferentiate into mature adipocytes by the ectopic expression of two adipogenic transcription factors, PPAR gamma and C/EBP alpha. When cultured under optimal conditions for muscle differentiation, murine G8 myoblasts expressing PPAR gamma and C/EBP alpha show markedly reduced levels of the myogenic basic helix-loop-helix proteins MyoD, myogenin, MRF4, and myf5 and are completely unable to differentiate into myotubes. Under conditions permissive for adipogenesis including a PPAR activator, these cells differentiate into mature adipocytes that express molecular markers characteristic of this lineage. Our results demonstrate that a developmental switch between these two related but highly specialized cell types can be controlled by the expression of key adipogenic transcription factors. These factors have an ability to inhibit myogenesis that is temporally and functionally separate from their ability to stimulate adipogenesis.

652 citations


Journal ArticleDOI
TL;DR: A role for PPAR gamma 2 is established in the adipose expression of the PEPCK gene and it is suggested that this factor functions as a coordinate regulator of multiple adipocyte-specific genes.
Abstract: Phosphoenolpyruvate carboxykinase (PEPCK) is expressed at high levels in liver, kidney, and adipose tissue. This enzyme catalyzes the rate-limiting step in hepatic and renal gluconeogenesis and adipose glyceroneogenesis. The regulatory factors important for adipose expression of the PEPCK gene are not well defined. Previous studies with transgenic mice established that the region between bp -2086 and -888 is required for expression in adipose tissue but not for expression in liver or kidney tissue. We show here that a DNA fragment containing this region can function as an enhancer and direct differentiation-dependent expression of a chloramphenicol acetyltransferase gene from a heterologous promoter in cultured 3T3-F442A preadipocytes and adipocytes. We further demonstrate that the adipocyte-specific transcription factor PPAR gamma 2, previously identified as a regulator of the adipocyte P2 enhancer, binds in a heterodimeric complex with RXR alpha to the PEPCK 5'-flanking region at two sites, termed PCK1 (bp -451 to -439) and PCK2 (bp -999 to -987). Forced expression of PPAR gamma 2 and RXR alpha activates the PEPCK enhancer in non-adipose cells. This activation is potentiated by peroxisome proliferators and fatty acids but not by 9-cis retinoic acid. Mutation of the PPAR gamma 2 binding site (PCK2) abolishes both the activity of the enhancer in adipocytes and its ability to be activated by PPAR gamma 2 and RXR alpha. These results establish a role for PPAR gamma 2 in the adipose expression of the PEPCK gene and suggest that this factor functions as a coordinate regulator of multiple adipocyte-specific genes.

590 citations


Journal ArticleDOI
TL;DR: The results suggest that UCP synthesized from the aP2 gene promoter is thermogenically active and capable of reducing fat stores.
Abstract: The brown fat-specific mitochondrial uncoupling protein (UCP) provides a mechanism for generating heat by uncoupling respiration and oxidative phosphorylation. It has been suggested that this system of thermogenesis can provide a defense against obesity. To test this idea, we created a transgenic mouse in which the fat-specific aP2 gene promoter directed Ucp expression in white fat and provided for the constitutive expression of Ucp in brown fat. Transgenic mice showed both Ucp mRNA and immunoreactive UCP in white fat at 2-10% the level normally measured in brown fat. A reduction in subcutaneous fat of aP2-Ucp C57BL/6J mice was observed at 3 mo of age. When the transgene was expressed in Avy genetically obese mice reductions in total body weight and subcutaneous fat stores were observed. Female transgenic Avy mice at 13 mo of age weighed 35 grams, a weight indistinguishable from nontransgenic C57BL/6J mice. Gonadal fat showed an increase in a novel adipocyte derivative that did not accumulate lipids and that constituted approximately 80% of the mass of the tissue in Avy transgenic. A major effect of aP2-Ucp in brown fat was to reduce endogenous gene expression by as much as 95%. The results suggest that UCP synthesized from the aP2 gene promoter is thermogenically active and capable of reducing fat stores.

548 citations


Journal ArticleDOI
TL;DR: Fibroblastic cell lines that express PPARgamma ectopically can be induced to differentiate into fat cells by a variety of lipids and lipid-like activators of PPARs, suggesting that this protein may function to link adipogenesis with systemic lipid metabolism.

464 citations


Journal ArticleDOI
08 Sep 1995-Cell
TL;DR: Experiments in which v-H-ras-expressing keratinocytes were grafted onto nude mice suggest that c-fos-deficient cells have an intrinsic defect that hinders tumorigenesis.

350 citations


Journal ArticleDOI
TL;DR: Using PCR-amplified binding analysis, it is demonstrated that ADD1/SREBP1 has dual DNA sequence specificity, binding to both an E-box motif (ATCACGTGA) and a non-E-box sequence previously shown to be important in cholesterol metabolism, sterol regulatory element 1 (SRE-1).
Abstract: Adipocyte determination- and differentiation-dependent factor 1 (ADD1), a member of the basic helix-loop-helix (bHLH) family of transcription factors, has been associated with both adipocyte differentiation and cholesterol homeostasis (in which case it has been termed SREBP1). Using PCR-amplified binding analysis, we demonstrate that ADD1/SREBP1 has dual DNA sequence specificity, binding to both an E-box motif (ATCACGTGA) and a non-E-box sequence previously shown to be important in cholesterol metabolism, sterol regulatory element 1 (SRE-1; ATCACCCCAC). The ADD1/SREBP1 consensus E-box site is similar to a regulatory sequence designated the carbohydrate response element, defined by its ability to regulate transcription in response to carbohydrate in genes involved in fatty acid and triglyceride metabolism in liver and fat. When expressed in fibroblasts, ADD1/SREBP1 activates transcription through both the carbohydrate response E-box element and SRE-1. Substitution of an atypical tyrosine in the basic region of ADD1/SREBP1 to an arginine found in most bHLH protein causes a restriction to only E-box binding. Conversely, substitution of a tyrosine for the equivalent arginine in another bHLH protein, upstream stimulatory factor, allows this factor to acquire a dual binding specificity similar to that of ADD1/SREBP1. Promoter activation by ADD1/SREBP1 through the carbohydrate response element E box is not sensitive to the tyrosine-to-arginine mutation, while activation through SRE-1 is completely suppressed. These data illustrate that ADD1/SREBP1 has dual DNA sequence specificity controlled by a single amino acid residue; this dual specificity may provide a novel mechanism to coordinate different pathways of lipid metabolism.

332 citations


Journal ArticleDOI
TL;DR: It was found that one VPF mutant isoform Cys-101 was not secreted and this mutant functioned as a dominant-negative suppressor of wild-type VPF secretion as demonstrated by co-expression assays in Cos-1 cells.

107 citations


Journal Article
TL;DR: It is demonstrated that c-fos is not required for in vivo transformation by v-abl, and the transformed cell that brings about the malignancy in mutant mice is the same pre-B-cell lymphoblast that is seen in control animals.
Abstract: Recent studies have suggested that cellular transformation by abl oncoproteins may be mediated by the ras signaling pathway One of the main nuclear targets of this signal transduction cascade is the Fos and Jun family of transcription factors To test the relevance of the c-fos proto-oncogene for v-abl-induced cancer development, we inoculated c-fos-deficient mice with the Abelson murine leukemia virus Neonatal c-fos-deficient mice infected with the Abelson complex are able to develop the pre-B-cell lymphoma that characterizes Abelson disease c-fos-deficient animals succumb to the disease with similar kinetics as their wild-type and heterozygous littermates Moreover, the transformed cell that brings about the malignancy in mutant mice is the same pre-B-cell lymphoblast that is seen in control animals These results demonstrate that c-fos is not required for in vivo transformation by v-abl

5 citations