scispace - formally typeset
Search or ask a question
Author

Bruce M. Spiegelman

Bio: Bruce M. Spiegelman is an academic researcher from Harvard University. The author has contributed to research in topics: Adipose tissue & Peroxisome proliferator-activated receptor. The author has an hindex of 179, co-authored 434 publications receiving 158009 citations. Previous affiliations of Bruce M. Spiegelman include University of California, San Francisco & Vassar College.


Papers
More filters
Journal ArticleDOI
TL;DR: The finding that the endogenous SCD2 mRNA levels were induced when wild-type Chinese hamster ovary fibroblasts were incubated in sterol-deficient medium is consistent with a role for SREBP in regulating transcription of the gene.

111 citations

Journal ArticleDOI
TL;DR: It was found that one VPF mutant isoform Cys-101 was not secreted and this mutant functioned as a dominant-negative suppressor of wild-type VPF secretion as demonstrated by co-expression assays in Cos-1 cells.

107 citations

Patent
14 Oct 1993
TL;DR: In this paper, a method of treating an animal suffering from insulin resistance in obesity linked Type II diabetes mellitus is disclosed, which includes providing a therapeutic agent that includes an antagonist to TNF-α function in a pharmaceutically acceptable carrier substance and administering a pharmacologically effective amount of the therapeutic agent to the animal.
Abstract: An induction of TNF-α mRNA expression has been observed in adipose tissue from four different insulin resistant rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. A method of treating an animal suffering from insulin resistance in obesity linked Type II diabetes mellitus is disclosed. The method includes providing a therapeutic agent that includes an antagonist to TNF-α function in a pharmaceutically acceptable carrier substance and administering a pharmacologically effective amount of the therapeutic agent to the animal.

104 citations

Journal ArticleDOI
TL;DR: This data suggests that fat cell differentiation involves an interplay between the C/EBP family of transcription factors and PPARγ and the thermogenic program of brown fat cells may also include a contribution from a new coactivator, PGC-1.
Abstract: There has been a great deal of recent progress in our understanding of the transcriptional control of adipogenesis. Current data suggest that fat cell differentiation involves an interplay between the C/EBP family of transcription factors and PPARgamma. The thermogenic program of brown fat cells may also include a contribution from a new coactivator, PGC-1. Recent data suggests that this coactivator is responsible for activation of thermogenesis and oxidative metabolism in both brown fat and muscle. The PGC-1 dependent program includes both mitochondrial biogenesis and tissue-specific expression of uncoupling proteins.

103 citations

Journal ArticleDOI
TL;DR: It is shown that PPARgamma interacts with Hic-5, a coactivator protein expressed in gut epithelial cells, which indicates that Hic5 is an important component in determining an epithelial differentiation program induced by PPARGamma.
Abstract: PPARγ is a dominant regulator of fat cell differentiation. However, this nuclear receptor also plays an important role in the differentiation of intestinal and other epithelial cell types. The mechanism by which PPARγ can influence the differentiation of such diverse cell lineages is unknown. We show here that PPARγ interacts with Hic-5, a coactivator protein expressed in gut epithelial cells. Hic-5 and PPARγ colocalize to the villus epithelium of the small intestine, and their expression during embryonic gut development correlates with the transition from endoderm to a specialized epithelium; expression of both these factors is reduced in tumors. Forced expression of Hic-5 in colon cancer cells enhances the PPARγ-mediated induction of several gut epithelial differentiation/maturation markers such as L-FABP, kruppel-like factor 4 (KLF4), and keratin 20. siRNA directed against Hic-5 specifically reduces PPARγ-mediated induction of gut epithelial genes in colon cells and in an ex vivo model of embryonic gut differentiation. Finally, forced expression of Hic-5 during 3T3-L1 preadipocyte differentiation inhibits adipogenesis while inducing inappropriate expression of several mRNAs characteristic of gut epithelium in these mesenchymal cells. These results indicate that Hic5 is an important component in determining an epithelial differentiation program induced by PPARγ.

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations