scispace - formally typeset
Search or ask a question
Author

Bruce Rae

Other affiliations: University of Edinburgh
Bio: Bruce Rae is an academic researcher from STMicroelectronics. The author has contributed to research in topics: CMOS & Photon counting. The author has an hindex of 21, co-authored 67 publications receiving 1539 citations. Previous affiliations of Bruce Rae include University of Edinburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported the high-frequency modulation of individual pixels in 8 × 8 arrays of III-nitride-based micro-pixellated light-emitting diodes, where the pixels within the array range from 14 to 84 μ m in diameter.
Abstract: We report the high-frequency modulation of individual pixels in 8 × 8 arrays of III-nitride-based micro-pixellated light-emitting diodes, where the pixels within the array range from 14 to 84 μ m in diameter. The peak emission wavelengths of the devices are 370, 405, 450 and 520 nm, respectively. Smaller area micro-LED pixels generally exhibit higher modulation bandwidths than their larger area counterparts, which is attributed to their ability to be driven at higher current densities. The highest optical -3 dB modulation bandwidths from these devices are shown to be in excess of 400 MHz, which, to our knowledge, are the highest bandwidths yet reported for GaN LEDs. These devices are also integrated with a complementary metal-oxide-semiconductor (CMOS) driver array chip, allowing for simple computer control of individual micro-LED pixels. The bandwidth of the integrated micro-LED/CMOS pixels is shown to be up to 185 MHz; data transmission at bit rates up to 512 Mbit/s is demonstrated using on-off keying non return-to-zero modulation with a bit-error ratio of less than 1 × 10-10, using a 450 nm-emitting 24 μm diameter CMOS-controlled micro-LED. As the CMOS chip allows for up to 16 independent data inputs, this device demonstrates the potential for multi-Gigabit/s parallel data transmission using CMOS-controlled micro-LEDs.

295 citations

Journal ArticleDOI
TL;DR: In this paper, a CMOS single-photon avalanche diode (SPAD)-based quarter video graphics array image sensor with 8- $\mu \text{m}$ pixel pitch and 26.8% fill factor was presented.
Abstract: A CMOS single-photon avalanche diode (SPAD)-based quarter video graphics array image sensor with 8- $\mu \text{m}$ pixel pitch and 26.8% fill factor (FF) is presented. The combination of analog pixel electronics and scalable shared-well SPAD devices facilitates high-resolution, high-FF SPAD imaging arrays exhibiting photon shot-noise-limited statistics. The SPAD has 47 counts/s dark count rate at 1.5 V excess bias (EB), 39.5% photon detection probability (PDP) at 480 nm, and a minimum of 1.1 ns dead time at 1 V EB. Analog single-photon counting imaging is demonstrated with maximum 14.2-mV/SPAD event sensitivity and 0.06e− minimum equivalent read noise. Binary quanta image sensor (QIS) 16-kframes/s real-time oversampling is shown, verifying single-photon QIS theory with $4.6\times $ overexposure latitude and 0.168e− read noise.

108 citations

Journal ArticleDOI
TL;DR: In this article, the fabrication and characterization of an ultraviolet (370 nm) emitting AlInGaN-based micro-light-emitting diode (micro-LED) array integrated with complementary metal-oxide-semiconductor control electronics is presented.
Abstract: We report the fabrication and characterization of an ultraviolet (370 nm) emitting AlInGaN-based micro-light- emitting diode (micro-LED) array integrated with complementary metal-oxide-semiconductor control electronics. This configuration allows an 8 t 8 array of micro-LED pixels, each of 72-mum diameter, to be individually addressed. The micro-LED pixels can be driven in direct current (dc), square wave, or pulsed operation, with linear feedback shift registers (LFSRs) allowing the output of the micro-LED pixels to mimic that of an optical data transmitter. We present the optical output power versus drive current characteristics of an individual pixel, which show a micro-LED output power of up to 570 muW in dc operation. Representative optical pulse trains demonstrating the micro-LEDs driven in square wave and LFSR modes, and controlled optical pulsewidths from 300 ps to 40 ns are also presented.

83 citations

Journal ArticleDOI
TL;DR: The sensor is demonstrated in a practical laboratory environment with measurements of a variety of fluorescent dyes with different single exponential lifetimes, successfully showing the sensor's ability to overcome the classic pile-up limitation of time-correlated single photon counting (TCSPC) by over an order of magnitude.
Abstract: We describe a miniaturized, high-throughput, time-resolved fluorescence lifetime sensor implemented in a 0.13 m CMOS process, combining single photon detection, multiple channel timing and embedded pre-processing of fluorescence lifetime estimations on a single device. Detection is achieved using an array of single photon avalanche diodes (SPADs) arranged in a digital silicon photomultiplier (SiPM) architecture with 400 ps output pulses and a 10% fill-factor. An array of time-to-digital converters (TDCs) with ≈50 ps resolution records up to 8 photon events during each excitation period. Data from the TDC array is then processed using a centre-of-mass method (CMM) pre-calculation to produce fluorescence lifetime estimations in real-time. The sensor is believed to be the first reported implementation of embedded fluorescence lifetime estimation. The system is demonstrated in a practical laboratory environment with measurements of a variety of fluorescent dyes with different single exponential lifetimes, successfully showing the sensor's ability to overcome the classic pile-up limitation of time-correlated single photon counting (TCSPC) by over an order of magnitude.

80 citations


Cited by
More filters
01 May 2005

2,648 citations

Journal Article
TL;DR: In this paper, an archaeal light-driven chloride pump (NpHR) was developed for temporally precise optical inhibition of neural activity, allowing either knockout of single action potentials, or sustained blockade of spiking.
Abstract: Our understanding of the cellular implementation of systems-level neural processes like action, thought and emotion has been limited by the availability of tools to interrogate specific classes of neural cells within intact, living brain tissue. Here we identify and develop an archaeal light-driven chloride pump (NpHR) from Natronomonas pharaonis for temporally precise optical inhibition of neural activity. NpHR allows either knockout of single action potentials, or sustained blockade of spiking. NpHR is compatible with ChR2, the previous optical excitation technology we have described, in that the two opposing probes operate at similar light powers but with well-separated action spectra. NpHR, like ChR2, functions in mammals without exogenous cofactors, and the two probes can be integrated with calcium imaging in mammalian brain tissue for bidirectional optical modulation and readout of neural activity. Likewise, NpHR and ChR2 can be targeted together to Caenorhabditis elegans muscle and cholinergic motor neurons to control locomotion bidirectionally. NpHR and ChR2 form a complete system for multimodal, high-speed, genetically targeted, all-optical interrogation of living neural circuits.

1,520 citations

Journal ArticleDOI
16 Mar 2018-Science
TL;DR: This work demonstrates an all-dielectric magnet-free topological insulator laser, with desirable properties stemming from the topological transport of light in the laser cavity, and demonstrates higher slope efficiencies compared to those of the topologically trivial counterparts.
Abstract: INTRODUCTION Physical systems that exhibit topological invariants are naturally endowed with robustness against perturbations, as was recently demonstrated in many settings in condensed matter, photonics, cold atoms, acoustics, and more. The most prominent manifestations of topological systems are topological insulators, which exhibit scatter-free edge-state transport, immune to perturbations and disorder. Recent years have witnessed intense efforts toward exploiting these physical phenomena in the optical domain, with new ideas ranging from topology-driven unidirectional devices to topological protection of path entanglement. But perhaps more technologically relevant than all topological photonic settings studied thus far is, as proposed by the accompanying theoretical paper by Harari et al ., an all-dielectric magnet-free topological insulator laser, with desirable properties stemming from the topological transport of light in the laser cavity. RATIONALE We demonstrate nonmagnetic topological insulator lasers. The topological properties of the laser system give rise to single-mode lasing, robustness against fabrication defects, and notably higher slope efficiencies compared to those of the topologically trivial counterparts. We further exploit the properties of the active topological platform by assembling topological insulator lasers from S -chiral microresonators that enforce predetermined unidirectional lasing even in the absence of magnetic fields. RESULTS Our topological insulator laser system is an aperiodic array of 10 unit cell–by–10 unit cell coupled ring resonators on an InGaAsP quantum wells platform. The active lattice uses the topological architecture suggested in the accompanying theoretical paper. This two-dimensional setting is composed of a square lattice of ring resonators coupled to each other by means of link rings. The intermediary links are judiciously spatially shifted to introduce a set of hopping phases, establishing a synthetic magnetic field and two topological band gaps. The gain in this laser system is provided by optical pumping. To promote lasing of the topologically protected edge modes, we pump the outer perimeter of the array while leaving the interior lossy. We find that this topological insulator laser operates in single mode even considerably above threshold, whereas the corresponding topologically trivial realizations lase in multiple modes. Moreover, the topological laser displays a slope efficiency that is considerably higher than that in the corresponding trivial realizations. We further demonstrate the topological features of this laser by observing that in the topological array, all sites emit coherently at the same wavelength, whereas in the trivial array, lasing occurs in localized regions, each at a different frequency. Also, by pumping only part of the topological array, we demonstrate that the topological edge mode always travels along the perimeter and emits light through the output coupler. By contrast, when we pump the trivial array far from the output coupler, no light is extracted from the coupler because the lasing occurs at stationary modes. We also observe that, even in the presence of defects, the topological protection always leads to more efficient lasing compared to that of the trivial counterpart. Finally, to show the potential of this active system, we assemble a topological system based on S -chiral resonators, which can provide new avenues to control the topological features. CONCLUSION We have experimentally demonstrated an all-dielectric topological insulator laser and found that the topological features enhance the lasing performance of a two-dimensional array of microresonators, making them lase in unison in an extended topologically protected scatter-free edge mode. The observed single longitudinal-mode operation leads to a considerably higher slope efficiency as compared to that of a corresponding topologically trivial system. Our results pave the way toward a new class of active topological photonic devices, such as laser arrays, that can operate in a coherent fashion with high efficiencies.

1,137 citations

Journal ArticleDOI
TL;DR: Large-scale commercialization of visible light communication devices will depend on both the development of robust and efficient engineering solutions, and the execution of incremental commercialization strategies.
Abstract: Visible light communication is a potentially disruptive form of wireless communication that can supplement radio frequency communication and also uniquely enable novel mobile wireless device use cases. High data rate downlink communication in homes and offices and high accuracy indoor positioning in retail stores are two of the most compelling use cases of this promising new technology. Large-scale commercialization of visible light communication devices will depend on both the development of robust and efficient engineering solutions, and the execution of incremental commercialization strategies.

896 citations