scispace - formally typeset
Search or ask a question
Author

Bruce Reed

Bio: Bruce Reed is an academic researcher from McGill University. The author has contributed to research in topics: Vertex (geometry) & Chordal graph. The author has an hindex of 48, co-authored 220 publications receiving 11049 citations. Previous affiliations of Bruce Reed include University of Bonn & Pierre-and-Marie-Curie University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that if Σ i(i - 2)λi > 0, then such graphs almost surely have a giant component, while if λ0, λ1… which sum to 1, then almost surely all components in such graphs are small.
Abstract: Given a sequence of nonnegative real numbers λ0, λ1… which sum to 1, we consider random graphs having approximately λi n vertices of degree i. Essentially, we show that if Σ i(i - 2)λi > 0, then such graphs almost surely have a giant component, while if Σ i(i -2)λ. < 0, then almost surely all components in such graphs are small. We can apply these results to Gn,p,Gn.M, and other well-known models of random graphs. There are also applications related to the chromatic number of sparse random graphs. © 1995 Wiley Periodicals, Inc.

2,494 citations

Journal ArticleDOI
TL;DR: The size of the giant component in the former case, and the structure of the graph formed by deleting that component is analyzed, which is basically that of a random graph with n′=n−∣C∣ vertices, and with λ′in′ of them of degree i.
Abstract: Given a sequence of nonnegative real numbers λ0, λ1, … that sum to 1, we consider a random graph having approximately λin vertices of degree i. In [12] the authors essentially show that if ∑i(i−2)λi>0 then the graph a.s. has a giant component, while if ∑i(i−2)λi<0 then a.s. all components in the graph are small. In this paper we analyse the size of the giant component in the former case, and the structure of the graph formed by deleting that component. We determine e, λ′0, λ′1 … such that a.s. the giant component, C, has en+o(n) vertices, and the structure of the graph remaining after deleting C is basically that of a random graph with n′=n−∣C∣ vertices, and with λ′in′ of them of degree i.

876 citations

Book
Bruce Reed1
20 Nov 2001
TL;DR: This talk defines graph colouring, explains the probabilistic tools which are used to solve them, and why one would expect the type of tools used to be effective for solving the types of problems typically studied.
Abstract: The term Probabilistic Method refers to the proof of deterministic statements using probabilistic tools. The method has been successfully applied to a number of problems in the field of graph colouring. We survey some of the results thereby obtained. The talk is intended to be accessible and short on details. We will first define graph colouring, explain the type of graph colouring problems which tend to attract interest. We then explain the probabilistic tools which are used to solve them, and why we would expect the type of tools that are used to be effective for solving the types of problems typically studied.

466 citations

Journal ArticleDOI
TL;DR: An O(mn) algorithm is presented to determine whether a graph G with m edges and n vertices has an odd cycle transversal of order at most k, for any fixed k, and an algorithm is obtained that determines a graph has a half integral packing of odd cycles of weight k.

447 citations

Proceedings ArticleDOI
24 Oct 1992
TL;DR: The authors present a linear-time algorithm that satisfies F with probability 1-o(1) whenever c<(0.25)2/sup k//k and establish a threshold for 2-SAT: if k = 2 then F is satisfiable with probability1-o (1) Whenever c<1 and unsatisfiable with probabilities 1-O(1), whenever c>1.
Abstract: Consider a randomly generated boolean formula F (in the conjunctive normal form) with m clauses of size k over n variables; k is fixed at any value greater than 1, but n tends to infinity and m = (1 + o(1))cn for some c depending only on k. It is easy to see that F is unsatisfiable with probability 1-o(1) whenever c>(ln 2)2/sup k/; the authors complement this observation by proving that F is satisfiable with probability 1-o(1) whenever c 1. >

333 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations

Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: This work aims to understand how an enormous network of interacting dynamical systems — be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and coupling architecture.
Abstract: The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

7,665 citations