scispace - formally typeset
Search or ask a question

Showing papers by "Bruce S. Ault published in 2014"


Journal ArticleDOI
TL;DR: Density functional theory calculations were performed to support the proposed mechanism for the photoreactivity of 1a and 1b and to aid in the characterization of the intermediates formed upon irradiation.
Abstract: Photolysis of 3-methyl-2-phenyl-2H-azirine (1a) in argon-saturated acetonitrile does not yield any new products, whereas photolysis in oxygen-saturated acetonitrile yields benzaldehyde (2) by interception of vinylnitrene 5 with oxygen. Similarly, photolysis of 1a in the presence of bromoform allows the trapping of vinylnitrene 5, leading to the formation of 1-bromo-1-phenylpropan-2-one (4). Laser flash photolysis of 1a in argon-saturated acetonitrile (λ = 308 nm) results in a transient absorption with λmax at ∼440 nm due to the formation of triplet vinylnitrene 5. Likewise, irradiation of 1a in cryogenic argon matrixes through a Pyrex filter results in the formation of ketene imine 11, presumably through vinylnitrene 5. In contrast, photolysis of 2-methyl-3-phenyl-2H-azirine (1b) in acetonitrile yields heterocycles 6 and 7. Laser flash photolysis of 1b in acetonitrile shows a transient absorption with a maximum at 320 nm due to the formation of ylide 8, which has a lifetime on the order of several millise...

27 citations


Journal ArticleDOI
TL;DR: Density functional theory (DFT) calculations were used to aid in the characterization of the intermediates formed upon irradiation of azide 1 and to validate the proposed mechanism for its photoreactivity.
Abstract: Photolysis of vinylazide 1, which has a built-in acetophenone triplet sensitizer, in argon-saturated toluene results in azirine 2, whereas irradiation in oxygen-saturated toluene yields cyanide derivatives 3 and 4. Laser flash photolysis of azide 1 in argon-saturated acetonitrile shows formation of vinylnitrene 1c, which has a λmax at ∼300 nm and a lifetime of ∼1 ms. Vinylnitrene 1c is formed with a rate constant of 4.25 × 105 s–1 from triplet 1,2-biradical 1b. Laser flash photolysis of 1 in oxygen-saturated acetonitrile results in 1c-O (λmax = 430 nm, τ ≈ 420 μs acetonitrile). Density functional theory (DFT) calculations were used to aid in the characterization of the intermediates formed upon irradiation of azide 1 and to validate the proposed mechanism for its photoreactivity.

20 citations


Journal ArticleDOI
TL;DR: DFT calculations were used to aid in the characterization of the excited states and biradicals involved in the cis-trans isomerization and to support the mechanism for the cis theomerization on the triplet surface.
Abstract: The irradiation of trans-vinylketones 1a–c yields the corresponding cis isomers 2a–c. Laser flash photolysis of 1a and 1b with 308 and 355 nm lasers results in their triplet ketones (T1K of 1), which rearrange to form triplet 1,2-biradicals 3a and 3b, respectively, whereas irradiation with a 266 nm laser produces their cis-isomers through singlet reactivity. Time-resolved IR spectroscopy of 1a with 266 nm irradiation confirmed that 2a is formed within the laser pulse. In comparison, laser flash photolysis of 1c with a 308 nm laser showed only the formation of 2c through singlet reactivity. At cryogenic temperatures, the irradiation of 1 also resulted in 2. DFT calculations were used to aid in the characterization of the excited states and biradicals involved in the cis–trans isomerization and to support the mechanism for the cis–trans isomerization on the triplet surface.

13 citations