scispace - formally typeset
Search or ask a question
Author

Brunda Ganneru

Bio: Brunda Ganneru is an academic researcher. The author has contributed to research in topics: Immunogenicity & Vaccination. The author has an hindex of 11, co-authored 13 publications receiving 494 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A double-blind, multicentre, randomised, controlled phase 1 trial to assess the safety and immunogenicity of BBV152 at 11 hospitals across India is presented in this article.
Abstract: Summary Background To mitigate the effects of COVID-19, a vaccine is urgently needed. BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) or alum (Algel). Methods We did a double-blind, multicentre, randomised, controlled phase 1 trial to assess the safety and immunogenicity of BBV152 at 11 hospitals across India. Healthy adults aged 18–55 years who were deemed healthy by the investigator were eligible. Individuals with positive SARS-CoV-2 nucleic acid and/or serology tests were excluded. Participants were randomly assigned to receive either one of three vaccine formulations (3 μg with Algel-IMDG, 6 μg with Algel-IMDG, or 6 μg with Algel) or an Algel only control vaccine group. Block randomisation was done with a web response platform. Participants and investigators were masked to treatment group allocation. Two intramuscular doses of vaccines were administered on day 0 (the day of randomisation) and day 14. Primary outcomes were solicited local and systemic reactogenicity events at 2 h and 7 days after vaccination and throughout the full study duration, including serious adverse events. Secondary outcome was seroconversion (at least four-fold increase from baseline) based on wild-type virus neutralisation. Cell-mediated responses were evaluated by intracellular staining and ELISpot. The trial is registered at ClinicalTrials.gov (NCT04471519). Findings Between July 13 and 30, 2020, 827 participants were screened, of whom 375 were enrolled. Among the enrolled participants, 100 each were randomly assigned to the three vaccine groups, and 75 were randomly assigned to the control group (Algel only). After both doses, solicited local and systemic adverse reactions were reported by 17 (17%; 95% CI 10·5–26·1) participants in the 3 μg with Algel-IMDG group, 21 (21%; 13·8–30·5) in the 6 μg with Algel-IMDG group, 14 (14%; 8·1–22·7) in the 6 μg with Algel group, and ten (10%; 6·9–23·6) in the Algel-only group. The most common solicited adverse events were injection site pain (17 [5%] of 375 participants), headache (13 [3%]), fatigue (11 [3%]), fever (nine [2%]), and nausea or vomiting (seven [2%]). All solicited adverse events were mild (43 [69%] of 62) or moderate (19 [31%]) and were more frequent after the first dose. One serious adverse event of viral pneumonitis was reported in the 6 μg with Algel group, unrelated to the vaccine. Seroconversion rates (%) were 87·9, 91·9, and 82·8 in the 3 μg with Algel-IMDG, 6 μg with Algel-IMDG, and 6 μg with Algel groups, respectively. CD4+ and CD8+ T-cell responses were detected in a subset of 16 participants from both Algel-IMDG groups. Interpretation BBV152 led to tolerable safety outcomes and enhanced immune responses. Both Algel-IMDG formulations were selected for phase 2 immunogenicity trials. Further efficacy trials are warranted. Funding Bharat Biotech International.

291 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported interim findings of the phase 2 trial on the immunogenicity and safety of BBV152, with the first dose administered on day 0 and the second dose on day 28.
Abstract: Summary Background BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine (3 μg or 6 μg) formulated with a toll-like receptor 7/8 agonist molecule (IMDG) adsorbed to alum (Algel). We previously reported findings from a double-blind, multicentre, randomised, controlled phase 1 trial on the safety and immunogenicity of three different formulations of BBV152 (3 μg with Algel-IMDG, 6 μg with Algel-IMDG, or 6 μg with Algel) and one Algel-only control (no antigen), with the first dose administered on day 0 and the second dose on day 14. The 3 μg and 6 μg with Algel-IMDG formulations were selected for this phase 2 study. Herein, we report interim findings of the phase 2 trial on the immunogenicity and safety of BBV152, with the first dose administered on day 0 and the second dose on day 28. Methods We did a double-blind, randomised, multicentre, phase 2 clinical trial to evaluate the immunogenicity and safety of BBV152 in healthy adults and adolescents (aged 12–65 years) at nine hospitals in India. Participants with positive SARS-CoV-2 nucleic acid and serology tests were excluded. Participants were randomly assigned (1:1) to receive either 3 μg with Algel-IMDG or 6 μg with Algel-IMDG. Block randomisation was done by use of an interactive web response system. Participants, investigators, study coordinators, study-related personnel, and the sponsor were masked to treatment group allocation. Two intramuscular doses of vaccine were administered on day 0 and day 28. The primary outcome was SARS-CoV-2 wild-type neutralising antibody titres and seroconversion rates (defined as a post-vaccination titre that was at least four-fold higher than the baseline titre) at 4 weeks after the second dose (day 56), measured by use of the plaque-reduction neutralisation test (PRNT50) and the microneutralisation test (MNT50). The primary outcome was assessed in all participants who had received both doses of the vaccine. Cell-mediated responses were a secondary outcome and were assessed by T-helper-1 (Th1)/Th2 profiling at 2 weeks after the second dose (day 42). Safety was assessed in all participants who received at least one dose of the vaccine. In addition, we report immunogenicity results from a follow-up blood draw collected from phase 1 trial participants at 3 months after they received the second dose (day 104). This trial is registered at ClinicalTrials.gov , NCT04471519 . Findings Between Sept 5 and 12, 2020, 921 participants were screened, of whom 380 were enrolled and randomly assigned to the 3 μg with Algel-IMDG group (n=190) or 6 μg with Algel-IMDG group (n=190). Geometric mean titres (GMTs; PRNT50) at day 56 were significantly higher in the 6 μg with Algel-IMDG group (197·0 [95% CI 155·6–249·4]) than the 3 μg with Algel-IMDG group (100·9 [74·1–137·4]; p=0·0041). Seroconversion based on PRNT50 at day 56 was reported in 171 (92·9% [95% CI 88·2–96·2] of 184 participants in the 3 μg with Algel-IMDG group and 174 (98·3% [95·1–99·6]) of 177 participants in the 6 μg with Algel-IMDG group. GMTs (MNT50) at day 56 were 92·5 (95% CI 77·7–110·2) in the 3 μg with Algel-IMDG group and 160·1 (135·8–188·8) in the 6 μg with Algel-IMDG group. Seroconversion based on MNT50 at day 56 was reported in 162 (88·0% [95% CI 82·4–92·3]) of 184 participants in the 3 μg with Algel-IMDG group and 171 (96·6% [92·8–98·8]) of 177 participants in the 6 μg with Algel-IMDG group. The 3 μg with Algel-IMDG and 6 μg with Algel-IMDG formulations elicited T-cell responses that were biased to a Th1 phenotype at day 42. No significant difference in the proportion of participants who had a solicited local or systemic adverse reaction in the 3 μg with Algel-IMDG group (38 [20·0%; 95% CI 14·7–26·5] of 190) and the 6 μg with Algel-IMDG group (40 [21·1%; 15·5–27·5] of 190) was observed on days 0–7 and days 28–35; no serious adverse events were reported in the study. From the phase 1 trial, 3-month post-second-dose GMTs (MNT50) were 39·9 (95% CI 32·0–49·9) in the 3μg with Algel-IMDG group, 69·5 (53·7–89·9) in the 6 μg with Algel-IMDG group, 53·3 (40·1–71·0) in the 6 μg with Algel group, and 20·7 (14·5–29·5) in the Algel alone group. Interpretation In the phase 1 trial, BBV152 induced high neutralising antibody responses that remained elevated in all participants at 3 months after the second vaccination. In the phase 2 trial, BBV152 showed better reactogenicity and safety outcomes, and enhanced humoral and cell-mediated immune responses compared with the phase 1 trial. The 6 μg with Algel-IMDG formulation has been selected for the phase 3 efficacy trial. Funding Bharat Biotech International. Translation For the Hindi translation of the abstract see Supplementary Materials section.

255 citations

Journal ArticleDOI
TL;DR: It is shown that the combination of RNA/codon-optimized gene sequences and fine-tuning of the relative expression levels of the two subunits within a cell resulted in increased production of the IL-12p70 heterodimer, indicating promising potential for in vivo use as molecular vaccine adjuvants and in cancer immunotherapy.

70 citations

Journal ArticleDOI
TL;DR: Co-delivery of IL-12 DNA with the SIV DNA vaccine enhanced the magnitude and breadth of immune responses in immunized rhesus macaques, and supports the inclusion of IL -12 DNA as vaccine adjuvant.
Abstract: Intramuscular injection of macaques with an IL-12 expression plasmid (0.1 or 0.4 mg DNA/animal) optimized for high level of expression and delivered using in vivo electroporation, resulted in the d...

66 citations

Journal ArticleDOI
23 Apr 2021-iScience
TL;DR: In this article, the safety and immunogenicity of a whole virion inactivated (WVI) SARS-CoV-2 vaccine (BBV152), adjuvanted with aluminum hydroxide gel (Algel), or TLR7/8 agonist chemisorbed Algel, were evaluated in mice, rats, and rabbits.

61 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is shown that neutralization level is highly predictive of immune protection, and an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic is provided.
Abstract: Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4–28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7–13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic. Estimates of the levels of neutralizing antibodies necessary for protection against symptomatic SARS-CoV-2 or severe COVID-19 are a fraction of the mean level in convalescent serum and will be useful in guiding vaccine rollouts.

2,705 citations

Journal ArticleDOI
TL;DR: In this article, structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the spike (S) protein with ACE2, engagement of the receptor-binding domain of the S protein with ACS, proteolytic activation of S protein, endocytosis and membrane fusion are provided.
Abstract: The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.

988 citations

Journal ArticleDOI
26 May 2011-Nature
TL;DR: It is reported that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (TEM) responses at potential sites of SIV replication in rhesu macaques and stringently control highly pathogenic SIVMAC239 infection early after mucosal challenge.
Abstract: The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.

963 citations

Journal ArticleDOI
TL;DR: Data suggest a new paradigm for AIDS vaccine development—vaccines capable of generating and maintaining HIV-specific TEM cells might decrease the incidence of HIV acquisition after sexual exposure.
Abstract: The rapid onset of massive, systemic viral replication during primary HIV or simian immunodeficiency virus (SIV) infection and the immune evasion capabilities of these viruses pose fundamental problems for vaccines that depend upon initial viral replication to stimulate effector T cell expansion and differentiation. We hypothesized that vaccines designed to maintain differentiated effector memory T cell (TEM cell) responses at viral entry sites might improve efficacy by impairing viral replication at its earliest stage, and we have therefore developed SIV protein-encoding vectors based on rhesus cytomegalovirus (RhCMV), the prototypical inducer of life-long TEM cell responses. RhCMV vectors expressing SIV Gag, Rev-Tat-Nef and Env persistently infected rhesus macaques, regardless of preexisting RhCMV immunity, and primed and maintained robust, SIV-specific CD4+ and CD8+ TEM cell responses (characterized by coordinate tumor necrosis factor, interferon-gamma and macrophage inflammatory protein-1beta expression, cytotoxic degranulation and accumulation at extralymphoid sites) in the absence of neutralizing antibodies. Compared to control rhesus macaques, these vaccinated rhesus macaques showed increased resistance to acquisition of progressive SIVmac239 infection upon repeated limiting-dose intrarectal challenge, including four macaques who controlled rectal mucosal infection without progressive systemic dissemination. These data suggest a new paradigm for AIDS vaccine development--vaccines capable of generating and maintaining HIV-specific TEM cells might decrease the incidence of HIV acquisition after sexual exposure.

637 citations