scispace - formally typeset
Search or ask a question
Author

Bruno Baudin

Bio: Bruno Baudin is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Angiotensin-converting enzyme & Endothelium. The author has an hindex of 21, co-authored 80 publications receiving 1745 citations. Previous affiliations of Bruno Baudin include Paris Descartes University & University of Paris-Sud.


Papers
More filters
Journal ArticleDOI
TL;DR: A protocol for easy isolation and culture of human umbilical vein endothelial cells (HUVECs) is described to supply every researcher with a method that can be applied in cell biology laboratories with minimum equipment.
Abstract: We describe a protocol for easy isolation and culture of human umbilical vein endothelial cells (HUVECs) to supply every researcher with a method that can be applied in cell biology laboratories with minimum equipment. Endothelial cells (ECs) are isolated from umbilical vein vascular wall by a collagenase treatment, then seeded on fibronectin-coated plates and cultured in a medium with Earles' salts and fetal calf serum (FCS), but without growth factor supplementation, for 7 days in a 37 degrees C-5% CO2 incubator. Cell confluency can be monitored by phase-contrast microscopy; ECs can be characterized using cell surface or intracellular markers and checked for contamination. Various protocols can be applied to HUVECs, from simple harvesting to a particular solubilization of proteins for proteomic analysis.

419 citations

Journal ArticleDOI
TL;DR: The proteomic analysis of the most explored present endothelial cell model, i.e. primocultures of human umbilical vein endothelial cells, led to the identification of 53 proteins of suspected endothelial origin in quiescent HUVECs.
Abstract: The endothelium is a single layer of cells lining the inside face of all blood vessels. It constitutes a major metabolic organ which is critically involved in the generation and the regulation of multiple physiological and pathological processes such as coagulation, hemostasis, inflammation, atherosclerosis, angiogenesis and cancerous metastasis dissemination. In order to increase our knowledge about the protein content and the main biological pathways of human vascular endothelial cells, we have undertaken the proteomic analysis of the most explored present endothelial cell model, i.e. primocultures of human umbilical vein endothelial cells (HUVECs). Using low levels of protein loads (~ 30 nug), the association of two-dimensional electrophoresis with matrix-assisted laser desorption/ionization-time of flight mass spectrometry, liquid chromatography-tandem mass spectrometry and database interrogations allowed us to identify 53 proteins of suspected endothelial origin in quiescent HUVECs. Beside cytoskeletal proteins such as actin, tubulin, tropomyosin and vimentin, we identified various proteins more especially implicated in cellular motility and plasticity (e.g. cofilin, F-actin capping protein and prefoldin), in regulation of apoptosis and senescence (protease inhibitor 9, glucose related proteins, heat shock proteins, thioredoxin peroxidase, nucleophosmin) as well as other proteins implicated in coagulation (annexin V, high mobility group protein), antigen presentation (valosin containing protein and ubiquitin carboxyl terminal hydrolase isozyme L1) and enzymatic capabilities (glutathione-S-transferase, protein disulfide isomerases, lactate deshydrogenase). The presented annotated 2-D maps of HUVECs will be soon available on the web at http://www. huvec.com.

101 citations

Journal ArticleDOI
TL;DR: It is verified that children with sarcoidosis (n = 20) had significantly increased serum ACE activity, and physiological variations in serumACE activity must be taken into account for diagnosing sarcoidsosis in children, for following the course of the disease, and for evaluating the accuracy of therapy.
Abstract: Angiotensin-converting enzyme (ACE) was measured in serum of 187 healthy children between the ages six months and 18 years. Results were pooled for five-year age intervals and compared with the reference values for adults that we previously determined [Clin Chem 1986;32:884-6). Results for each age group were also studied as a function of sex. Children had higher ACE activities in serum than did adults (P less than 0.001), but these activities were age-related only from age four to 18 years. Adolescents showed sex-related differences, with higher serum ACE activities in boys than in girls (P less than 0.05). Both sex- and age-related differences may be related to a steroid hormonal regulation of ACE biosynthesis. We also verified that children with sarcoidosis (n = 20) had significantly increased serum ACE activity. Such physiological variations in serum ACE activity must be taken into account for diagnosing sarcoidosis in children, for following the course of the disease, and for evaluating the accuracy of therapy.

94 citations

Journal ArticleDOI
TL;DR: Monitoring sarcoidosis obviates the measurement of ACE activity in other biological fluids, e.g., broncho-alveolar and cerebrospinal fluids, in the search of a locoregional dissemination or dis-simulation of the disease.
Abstract: Angiotensin I-converting enzyme (ACE) is a peptidyldipeptide hydrolase that is located mainly on the luminal surface of vascular endothelial cells but also in cells derived from the monocyte-macrophage system. Physiologically, ACE is a key enzyme in the renin-angiotensin system, converting angiotensin I into the potent vasopressor angiotensin II and also inactivating the vasodilator bradykinin. Increased serum ACE activity (SACE) has been reported in pathologies involving a stimulation of the monocytic cell line, primarily granulomatous diseases. Sarcoidosis is the most frequent and the better studied of these diseases; high SACE is not only a well-established marker for the diagnosis but is also a useful tool for following its course and evaluating the effect of therapy. SACE can also be increased in nonsarcoidotic pulmonary granulomatous diseases such as silicosis and asbestosis, in extrathoracic granulomatous pathologies such as Gauchers disease and leprosis, and, to a lesser extent, in nongranulomatous disorders such as hyperthyroidism or cholestasis. On the other hand, monitoring sarcoidosis obviates the measurement of ACE activity in other biological fluids, e.g., broncho-alveolar and cerebrospinal fluids, in the search of a locoregional dissemination or dis-simulation of the disease. Decreased SACE has been reported in vascular pathologies involving an endothelial abnormality, e.g., deep vein thrombosis, and in endothelium dysfunctions related to the toxicity of chemo- and radiotherapy used in cancers, leukemias, and hematopoietic or organ transplantations. SACE is also of interest for monitoring arterial hypertension treated with specific synthetic ACE inhibitors. These various reasons for determining ACE activity have led to the development of numerous methods. The most widely used is the spectrophotometric assay using hippuryl-histidyl-leucine as substrate. Fluorimetric and radiochemical assays using both classic and novel substrates have been proposed, but they are time consuming, require special apparatus, and are not suited to automation. Kinetic spectrophotometry of furylacryloyl-phenylalanyl-glycyl-glycine hydrolysis is now used extensively because it is easy to automatize. Efforts are now required to standardize one or more of these assays. Indeed, "normal" plasma values differ not only according to the substrate, but also to the method of determination and to sex and age.

93 citations

Journal ArticleDOI
TL;DR: Findings provide evidence of relationships between endothelial toxicity of anticancer drugs and the key role of bcl-2 for resistance of endothelium cells toward apoptosis; moreover lack of p53 and bax in quiescent cells contributes to Resistance of endothelial cells to DNA-damaging agents.

81 citations


Cited by
More filters
01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

01 May 2005

2,648 citations

DOI
05 Nov 2009
TL;DR: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此第一印象中拟诊 结核5例,为此应引起临床对本 病诊
Abstract: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此病误诊的文献,误诊率高达63.2%,当然有误诊就会有误治,如孙永昌等~([2])报道26例结节病在影像学检查诊断的第一印象中拟诊结核5例,其中就有2例完成规范的抗结核治疗,为此应引起临床对本病诊治的重视。

1,821 citations

Journal Article
TL;DR: A combined segregation and linkage analysis provided evidence that the major-gene effect was due to a variant of the ACE gene, in strong linkage disequilibrium with the I/D polymorphism.
Abstract: The hypothesis of a genetic control of plasma angiotensin I-converting enzyme (ACE) level has been suggested both by segregation analysis and by the identification of an insertion/deletion (I/D) polymorphism of the ACE gene, a polymorphism contributing much to the variability of ACE level. To elucidate whether the I/D polymorphism was directly involved in the genetic regulation, plasma ACE activity and genotype for the I/D polymorphism were both measured in a sample of 98 healthy nuclear families. The pattern of familial correlations of ACE level was compatible with a zero correlation between spouses and equal parent-offspring and sib-sib correlations (.24 +/- .04). A segregation analysis indicated that this familial resemblance could be entirely explained by the transmission of a codominant major gene. The I/D polymorphism was associated with marked differences of ACE levels, although these differences were less pronounced than those observed in the segregation analysis. After adjustment for the polymorphism effects, the residual heritability (.280 +/- .096) was significant. Finally, a combined segregation and linkage analysis provided evidence that the major-gene effect was due to a variant of the ACE gene, in strong linkage disequilibrium with the I/D polymorphism. The marker allele I appeared always associated with the major-gene allele s characterized by lower ACE levels. The frequency of allele I was .431 +/- .025, and that of major allele s was .557 +/- .041. The major gene had codominant effects equal to 1.3 residual SDs and accounted for 44% of the total variability of ACE level, as compared with 28% for the I/D polymorphism.(ABSTRACT TRUNCATED AT 250 WORDS)

1,196 citations

Journal ArticleDOI
TL;DR: The origin and the specific features of the myofibroblast in diverse fibrotic lesions, such as systemic sclerosis; kidney, liver, and lung fibrosis; and the stromal reaction to certain epithelial tumors are reviewed.
Abstract: The discovery of the myofibroblast has opened new perspectives for the comprehension of the biological mechanisms involved in wound healing and fibrotic diseases. In recent years, many advances have been made in understanding important aspects of myofibroblast basic biological characteristics. This review summarizes such advances in several fields, such as the following: i) force production by the myofibroblast and mechanisms of connective tissue remodeling; ii) factors controlling the expression of α-smooth muscle actin, the most used marker of myofibroblastic phenotype and, more important, involved in force generation by the myofibroblast; and iii) factors affecting genesis of the myofibroblast and its differentiation from precursor cells, in particular epigenetic factors, such as DNA methylation, microRNAs, and histone modification. We also review the origin and the specific features of the myofibroblast in diverse fibrotic lesions, such as systemic sclerosis; kidney, liver, and lung fibrosis; and the stromal reaction to certain epithelial tumors. Finally, we summarize the emerging strategies for influencing myofibroblast behavior in vitro and in vivo, with the ultimate goal of an effective therapeutic approach for myofibroblast-dependent diseases.

1,041 citations